Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Automatic Dependent Surveillance-Broadcast (ADS-B) has been widely adopted as the de facto standard for air-traffic surveillance. Aviation regulations require all aircraft to actively broadcast status reports containing identity, position, and movement information. However, the lack of security measures exposes ADS-B to cyberattacks by technically capable adversaries with the purpose of interfering with air safety. In this paper, we develop a non-invasive trust evaluation system to detect attacks on ADS-B-based air-traffic surveillance using real-world flight data as collected by an infrastructure of ground-based sensors. Taking advantage of the redundancy of geographically distributed sensors in a crowdsourcing manner, we implement verification tests to pursue security by wireless witnessing. At the core of our proposal is the combination of verification checks and Machine Learning (ML)-aided classification of reception patterns—such that user-collected data cross-validates the data provided by other users. Our system is non-invasive in the sense that it neither requires modifications on the deployed hardware nor the software protocols and only utilizes already available data. We demonstrate that our system can successfully detect GPS spoofing, ADS-B spoofing, and even Sybil attacks for airspaces observed by at least three benign sensors. We are further able to distinguish the type of attack, identify affected sensors, and tune our system to dynamically adapt to changing air-traffic conditions.

View More Papers

Who's Hosting the Block Party? Studying Third-Party Blockage of...

Marius Steffens (CISPA Helmholtz Center for Information Security), Marius Musch (TU Braunschweig), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

Demo #7: Automated Tracking System For LiDAR Spoofing Attacks...

Yulong Cao, Jiaxiang Ma, Kevin Fu (University of Michigan), Sara Rampazzi (University of Florida), and Z. Morley Mao (University of Michigan) Best Demo Award Runner-up ($200 cash prize)!

Read More

Preventing and Detecting State Inference Attacks on Android

Andrea Possemato (IDEMIA and EURECOM), Dario Nisi (EURECOM), Yanick Fratantonio (EURECOM and Cisco Talos)

Read More

From WHOIS to WHOWAS: A Large-Scale Measurement Study of...

Chaoyi Lu (Tsinghua University; Beijing National Research Center for Information Science and Technology), Baojun Liu (Tsinghua University; Beijing National Research Center for Information Science and Technology; Qi An Xin Group), Yiming Zhang (Tsinghua University; Beijing National Research Center for Information Science and Technology), Zhou Li (University of California, Irvine), Fenglu Zhang (Tsinghua University), Haixin Duan…

Read More