Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Automatic Dependent Surveillance-Broadcast (ADS-B) has been widely adopted as the de facto standard for air-traffic surveillance. Aviation regulations require all aircraft to actively broadcast status reports containing identity, position, and movement information. However, the lack of security measures exposes ADS-B to cyberattacks by technically capable adversaries with the purpose of interfering with air safety. In this paper, we develop a non-invasive trust evaluation system to detect attacks on ADS-B-based air-traffic surveillance using real-world flight data as collected by an infrastructure of ground-based sensors. Taking advantage of the redundancy of geographically distributed sensors in a crowdsourcing manner, we implement verification tests to pursue security by wireless witnessing. At the core of our proposal is the combination of verification checks and Machine Learning (ML)-aided classification of reception patterns—such that user-collected data cross-validates the data provided by other users. Our system is non-invasive in the sense that it neither requires modifications on the deployed hardware nor the software protocols and only utilizes already available data. We demonstrate that our system can successfully detect GPS spoofing, ADS-B spoofing, and even Sybil attacks for airspaces observed by at least three benign sensors. We are further able to distinguish the type of attack, identify affected sensors, and tune our system to dynamically adapt to changing air-traffic conditions.

View More Papers

What Remains Uncaught?: Characterizing Sparsely Detected Malicious URLs on...

Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Read More

On the Insecurity of SMS One-Time Password Messages against...

Zeyu Lei (Purdue University), Yuhong Nan (Purdue University), Yanick Fratantonio (Eurecom & Cisco Talos), Antonio Bianchi (Purdue University)

Read More

Experimental Evaluation of a Binary-level Symbolic Analyzer for Spectre:...

Lesly-Ann Daniel (CEA List), Sébastien Bardin (CEA List, Université Paris-Saclay), Tamara Rezk (INRIA)

Read More

Understanding and Detecting International Revenue Share Fraud

Merve Sahin (SAP Security Research), Aurélien Francillon (EURECOM)

Read More