Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

In the Data as a Service (DaaS) model, data curators, such as commercial providers like Amazon Mechanical Turk, Appen, and TELUS International, aggregate quality data from numerous contributors and monetize it for deep learning (DL) model providers. However, malicious contributors can poison this data, embedding backdoors in the trained DL models. Existing methods for detecting poisoned samples face significant limitations: they often rely on reserved clean data; they are sensitive to the poisoning rate, trigger type, and backdoor type; and they are specific to classification tasks. These limitations hinder their practical adoption by data curators.

This work, for the first time, investigates the textit{training trajectory} of poisoned samples in the textit{spectrum domain}, revealing distinctions from benign samples that are not apparent in the original non-spectrum domain. Building on this novel perspective, we propose TellTale to detect and sanitize poisoned samples as a one-time effort, addressing textit{all} of the aforementioned limitations of prior work. Through extensive experiments, TellTale demonstrates the ability to defeat both universal and challenging partial backdoor types without relying on any reserved clean data. TellTale is also validated to be agnostic to various trigger types, including the advanced clean-label trigger attack, Narcissus (CCS'2023). Moreover, TellTale proves effective across diverse data modalities (e.g., image, audio and text) and non-classification tasks (e.g., regression)---making it the only known training phase poisoned sample detection method applicable to non-classification tasks. In all our evaluations, TellTale achieves a detection accuracy (i.e., accurately identifying poisoned samples) of at least 95.52% and a false positive rate (i.e., falsely recognizing benign samples as poisoned ones) no higher than 0.61%. Comparisons with state-of-the-art methods, ASSET (Usenix'2023) and CT (Usenix'2023), further affirm TellTale's superior performance. More specifically, ASSET fails to handle partial backdoor types and incurs an unbearable false positive rate with clean/benign datasets common in practice, while CT fails against the Narcissus trigger. In contrast, TellTale proves highly effective across testing scenarios where prior work fails. The source code is released at https://github.com/MPaloze/Telltale.

View More Papers

Automatic Library Fuzzing through API Relation Evolvement

Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Read More

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More