Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Type confusion, or bad casting, is a common C++ attack vector. Such vulnerabilities cause a program to interpret an object as belonging to a different type, enabling powerful attacks, like control-flow hijacking. C++ limits runtime checks to polymorphic classes because only those have inline type information. The lack of runtime type information throughout an object’s lifetime makes it challenging to enforce continuous checks and thereby prevent type confusion during downcasting. Current solutions either record type information for all objects disjointly, incurring prohibitive runtime overhead, or restrict protection to a fraction of all objects.
Our C++ dialect, type++, enforces the paradigm that each allocated object involved in downcasting carries type information throughout its lifetime, ensuring correctness by enabling type checks wherever and whenever necessary. As not just polymorphic objects but all objects are typed, all down-to casts can now be dynamically verified. Compared to existing solutions, our strategy greatly reduces runtime cost and enables type++ usage both during testing and as mitigation. Targeting SPEC CPU2006 and CPU2017, we compile and run 2,040 kLoC, while changing only 314 LoC. To help developers, our static analysis warns where code changes in target programs may be necessary. Running the compiled benchmarks results in negligible performance overhead (1.19% on SPEC CPU2006 and 0.82% on SPEC CPU2017) verifying a total of 90B casts (compared to 3.8B for the state-of-the-art, a 23× improvement). type++ discovers 122 type confusion issues in the SPEC CPU benchmarks among which 62 are new. Targeting Chromium, we change 229 LoC out of 35 MLoC to protect 94.6% of the classes that could be involved in downcasting vulnerabilities, while incurring only 0.98% runtime overhead compared to the baseline.

View More Papers

Explanation as a Watermark: Towards Harmless and Multi-bit Model...

Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Read More

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More

Ghidra: Is Newer Always Better?

Jonathan Crussell (Sandia National Laboratories)

Read More

Enhancing Security in Third-Party Library Reuse – Comprehensive Detection...

Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Read More