Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Type confusion, or bad casting, is a common C++ attack vector. Such vulnerabilities cause a program to interpret an object as belonging to a different type, enabling powerful attacks, like control-flow hijacking. C++ limits runtime checks to polymorphic classes because only those have inline type information. The lack of runtime type information throughout an object’s lifetime makes it challenging to enforce continuous checks and thereby prevent type confusion during downcasting. Current solutions either record type information for all objects disjointly, incurring prohibitive runtime overhead, or restrict protection to a fraction of all objects.
Our C++ dialect, type++, enforces the paradigm that each allocated object involved in downcasting carries type information throughout its lifetime, ensuring correctness by enabling type checks wherever and whenever necessary. As not just polymorphic objects but all objects are typed, all down-to casts can now be dynamically verified. Compared to existing solutions, our strategy greatly reduces runtime cost and enables type++ usage both during testing and as mitigation. Targeting SPEC CPU2006 and CPU2017, we compile and run 2,040 kLoC, while changing only 314 LoC. To help developers, our static analysis warns where code changes in target programs may be necessary. Running the compiled benchmarks results in negligible performance overhead (1.19% on SPEC CPU2006 and 0.82% on SPEC CPU2017) verifying a total of 90B casts (compared to 3.8B for the state-of-the-art, a 23× improvement). type++ discovers 122 type confusion issues in the SPEC CPU benchmarks among which 62 are new. Targeting Chromium, we change 229 LoC out of 35 MLoC to protect 94.6% of the classes that could be involved in downcasting vulnerabilities, while incurring only 0.98% runtime overhead compared to the baseline.

View More Papers

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

SNITCH: Leveraging IP Geolocation for Active VPN Detection

Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Read More

Statically Discover Cross-Entry Use-After-Free Vulnerabilities in the Linux Kernel

Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Read More