Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Existing attack investigation solutions for GUI applications suffer from a few limitations such as inaccuracy (because of the dependence explosion problem), requiring instrumentation, and providing very low visibility. Such limitations have hindered their widespread and practical deployment. In this paper, we present UIScope, a novel accurate, instrumentation-free, and visible attack investigation system for GUI applications. The core idea of UIScope is to perform causality analysis on both UI elements/events which represent users' perspective and low-level system events which provide detailed information of what happens under the hood, and then correlate system events with UI events to provide high accuracy and visibility. Long running processes are partitioned to individual UI transitions, to which low-level system events are attributed, making the results accurate. The produced graphs contain (causally related) UI elements with which users are very familiar, making them easily accessible. We deployed UIScope on 7 machines for a week, and also utilized UIScope to conduct an investigation of 6 real-world attacks. Our evaluation shows that compared to existing works, UIScope introduces negligible overhead (less than 1% runtime overhead and 3.05 MB event logs per hour on average) while UIScope can precisely identify attack provenance while offering users thorough visibility into the attack context. 

View More Papers

BLAG: Improving the Accuracy of Blacklists

Sivaramakrishnan Ramanathan (University of Southern California/Information Sciences Institute), Jelena Mirkovic (University of Southern California/Information Sciences Institute), Minlan Yu (Harvard University)

Read More

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More

Who's Hosting the Block Party? Studying Third-Party Blockage of...

Marius Steffens (CISPA Helmholtz Center for Information Security), Marius Musch (TU Braunschweig), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More