Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

An appraisal system is a feedback mechanism that has gained popularity in underground marketplaces. This system allows appraisers, who receive free samples from vendors, to provide assessments (i.e., appraisal reviews) for products in underground marketplaces. In this paper, we present the first measurement study on the appraisal system within underground marketplaces. Specifically, from 17M communication traces from eight marketplaces spanning from Feb 2006 to Mar 2023, we discover 56,229 appraisal reviews posted by 18,701 unique appraisers. We look into the appraisal review ecosystem, revealing five commonly used requirements and merits in the appraiser selection process. These findings indicate that the appraisal system is a well-established and structured process within the underground marketplace ecosystem. Furthermore, we reveal the presence of high-quality and unique cyber threat intelligence (CTI) in appraisal reviews. For example, we identify the geolocations of followers for a social booster and programming languages used for malware. Leveraging our extraction model, which integrates 41 distinct types of CTI, we capture 23,978 artifacts associated with 16,668 (50.2%) appraisal reviews. In contrast, artifacts are found in only 8.9% of listings and 2.7% of non-appraisal reviews. Our study provides valuable insights into this under-explored source of CTI, complementing existing research on threat intelligence gathering.

View More Papers

Improving the Robustness of Transformer-based Large Language Models with...

Lujia Shen (Zhejiang University), Yuwen Pu (Zhejiang University), Shouling Ji (Zhejiang University), Changjiang Li (Penn State), Xuhong Zhang (Zhejiang University), Chunpeng Ge (Shandong University), Ting Wang (Penn State)

Read More

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More