Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Domain names are often registered and abused for harmful and illegal Internet activities. To mitigate such threats, as an emerging security service, Protective DNS (PDNS) blocks access to harmful content by proactively offering rewritten DNS responses, which resolve malicious domains to controlled hosts. While it has become an effective tool against cybercrime, given their implementation divergence, little has been done from the security community in understanding the deployment, operational status and security policies of PDNS services.

In this paper, we present a large-scale measurement study of the deployment and security implications of open PDNS services. We first perform empirical analysis over 28 popular PDNS providers and summarize major formats of DNS rewriting policies. Then, powered by the derived rules, we design a methodology that identifies intentional DNS rewriting enforced by open PDNS servers in the wild. Our findings are multi-faceted. On the plus side, the deployment of PDNS is now starting to scale: we identify 17,601 DNS servers (9.1% of all probed) offering such service. For DNS clients, switching from regular DNS to PDNS induces negligible query latency, despite additional steps (e.g., checking against threat intelligence and rewriting DNS response) being required from the server side. However, we also find flaws and vulnerabilities within PDNS implementation, including evasion of blocking policies and denial of service. Through responsible vulnerability disclosure, we have received 12 audit assessment results of high-risk vulnerabilities. Our study calls for proper guidance and best practices for secure PDNS operation.

View More Papers

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More

Towards Automated Regulation Analysis for Effective Privacy Compliance

Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Read More

GTrans: Graph Transformer-Based Obfuscation-resilient Binary Code Similarity Detection

Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

Read More