Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Decompilation aims to recover the source code form of a binary executable. It has many security applications, such as malware analysis, vulnerability detection, and code hardening. A prominent challenge in decompilation is to recover variable names. We propose a novel technique that leverages the strengths of generative models while mitigating model biases. We build a prototype, GenNm, from pre-trained generative models CodeGemma-2B, CodeLlama-7B, and CodeLlama-34B. We finetune GenNm on decompiled functions and teach models to leverage contextual information. GenNm includes names from callers and callees while querying a function, providing rich contextual information within the model's input token limitation. We mitigate model biases by aligning the output distribution of models with symbol preferences of developers. Our results show that GenNm improves the state-of-the-art name recovery precision by 5.6-11.4 percentage points on two commonly used datasets and improves the state-of-the-art by 32% (from 17.3% to 22.8%) in the most challenging setup where ground-truth variable names are not seen in the training dataset.

View More Papers

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More

Understanding Miniapp Malware: Identification, Dissection, and Characterization

Yuqing Yang (The Ohio State University), Yue Zhang (Drexel University), Zhiqiang Lin (The Ohio State University)

Read More

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

Yutong Wu (Nanyang Technological University), Jie Zhang (Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), Florian Kerschbaum (University of Waterloo), Tianwei Zhang (Nanyang Technological University)

Read More

mmProcess: Phase-Based Speech Reconstruction from mmWave Radar

Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

Read More