Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Searchable encryption lets an untrusted cloud server store keyword-document tuples encrypted by writers and conduct keyword searches with tokens from readers. Multi-writer schemes naturally offer broad applicability; however, it is unclear how to achieve the distinctive features of single-writer systems, namely, optimal search traversing only the result set and forward privacy invalidating old search tokens against any new data. Cutting-edge results by Wang and Chow (Usenix Security 2022) incur extra traversal over existing keywords and weaken forward privacy that only invalidates previous-issued search tokens periodically.

We propose delegatable searchable encryption (DSE) with optimal search time for the multi-writer multi-reader setting. Beyond forward privacy, DSE supports security measures countering new integrity threats by malicious clients and keyword-guessing attacks inherent to public-key schemes. These are simultaneously made conceivable via one-time delegations of updating and/or searching power from the data owner and our tailored notion of shiftable multi-recipient counter encryption. DSE also benefits from the hybrid searchable encryption idea of Wang and Chow but at a microscopic level. Our evaluation confirms the order-of-magnitude improvement in search time over real-world datasets.

View More Papers

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More