Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Searchable encryption lets an untrusted cloud server store keyword-document tuples encrypted by writers and conduct keyword searches with tokens from readers. Multi-writer schemes naturally offer broad applicability; however, it is unclear how to achieve the distinctive features of single-writer systems, namely, optimal search traversing only the result set and forward privacy invalidating old search tokens against any new data. Cutting-edge results by Wang and Chow (Usenix Security 2022) incur extra traversal over existing keywords and weaken forward privacy that only invalidates previous-issued search tokens periodically.

We propose delegatable searchable encryption (DSE) with optimal search time for the multi-writer multi-reader setting. Beyond forward privacy, DSE supports security measures countering new integrity threats by malicious clients and keyword-guessing attacks inherent to public-key schemes. These are simultaneously made conceivable via one-time delegations of updating and/or searching power from the data owner and our tailored notion of shiftable multi-recipient counter encryption. DSE also benefits from the hybrid searchable encryption idea of Wang and Chow but at a microscopic level. Our evaluation confirms the order-of-magnitude improvement in search time over real-world datasets.

View More Papers

Space-Domain AI Applications need Rigorous Security Risk Analysis

Alexandra Weber (Telespazio Germany GmbH), Peter Franke (Telespazio Germany GmbH)

Read More

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More