Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

In this paper, we propose VETEOS, a static vetting tool for the "Groundhog Day" vulnerabilities in EOSIO contracts. In a "Groundhog Day" attack, culprits leverage the distinctive rollback issue in EOSIO contracts, which allows them to persistently execute identical contract code with varying inputs. By using the information exposed in prior executions, these attackers unlawfully amass insights about the target contract, thereby figuring out a reliable method to generate unauthorized profits. To tackle this problem, we formally define this unique vulnerability as a control and data dependency problem, and develop a custom static analysis tool, VETEOS, that can precisely discover such bugs directly from EOSIO WebAssembly (WASM) bytecode. VETEOS has detected 735 new vulnerabilities in the wild and outperforms the state-of-the-art EOSIO contract analyzer.

View More Papers

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless...

Yang Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Robert H. Deng (School of Computing and Information Systems, Singapore Management University, Singapore), Guomin Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Yingjiu Li (Department of Computer Science, University of Oregon, USA), HweeHwa Pang (School of Computing and Information Systems,…

Read More

Secure Multiparty Computation of Threshold Signatures Made More Efficient

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More