Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

In this paper, we propose VETEOS, a static vetting tool for the "Groundhog Day" vulnerabilities in EOSIO contracts. In a "Groundhog Day" attack, culprits leverage the distinctive rollback issue in EOSIO contracts, which allows them to persistently execute identical contract code with varying inputs. By using the information exposed in prior executions, these attackers unlawfully amass insights about the target contract, thereby figuring out a reliable method to generate unauthorized profits. To tackle this problem, we formally define this unique vulnerability as a control and data dependency problem, and develop a custom static analysis tool, VETEOS, that can precisely discover such bugs directly from EOSIO WebAssembly (WASM) bytecode. VETEOS has detected 735 new vulnerabilities in the wild and outperforms the state-of-the-art EOSIO contract analyzer.

View More Papers

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More