Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Accurate and robust disassembly of stripped binaries is challenging. The root of the difficulty is that high-level structures, such as instruction and function boundaries, are absent in stripped binaries and must be recovered based on incomplete information. Current disassembly approaches rely on heuristics or simple pattern matching to approximate the recovery, but these methods are often inaccurate and brittle, especially across different compiler optimizations.

We present XDA, a transfer-learning-based disassembly framework that learns different contextual dependencies present in machine code and transfers this knowledge for accurate and robust disassembly. We design a self-supervised learning task motivated by masked Language Modeling to learn interactions among byte sequences in binaries. The outputs from this task are byte embeddings that encode sophisticated contextual dependencies between input binaries' byte tokens, which can then be finetuned for downstream disassembly tasks.

We evaluate XDA's performance on two disassembly tasks, recovering function boundaries and assembly instructions, on a collection of 3,121 binaries taken from SPEC CPU2017, SPEC CPU2006, and the BAP corpus. The binaries are compiled by GCC, ICC, and MSVC on x86/x64 Windows and Linux platforms over 4 optimization levels. XDA achieves 99.0% and 99.7% F1 score at recovering function boundaries and instructions, respectively, surpassing the previous state-of-the-art on both tasks. It also maintains speed on par with the fastest ML-based approach and is up to 38x faster than hand-written disassemblers like IDA Pro. We release the code of XDA at https://github.com/CUMLSec/XDA.

View More Papers

Favocado: Fuzzing the Binding Code of JavaScript Engines Using...

Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University),…

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More