Inon Kaplan (Independent researcher), Ron even (Independent researcher), Amit Klein (The Hebrew University of Jerusalem, Israel)

This research is the first holistic analysis of the algorithmic security of the Google Fuchsia/gVisor network stack. Google Fuchsia is a new operating system developed by Google in a "clean slate" fashion. It is conjectured to eventually replace Android as an operating system for smartphones, tablets, and IoT devices. Fuchsia is already running in millions of Google Nest Hub consumer products. Google gVisor is an application kernel used by Google's App Engine, Cloud Functions, Cloud ML Engine, Cloud Run, and Google Kubernetes
Engine (GKE). Google Fuchsia uses the gVisor network stack code for its TCP/IP implementation.

We report multiple vulnerabilities in the algorithms used by Fuchsia/gVisor to populate network protocol header fields, specifically the TCP initial sequence number, TCP timestamp, TCP and UDP source ports, and IPv4/IPv6 fragment ID fields. In our holistic analysis, we show how a combination of multiple attacks results in the exposure of a PRNG seed and a hashing key used to generate the above fields. This enables an attacker to predict future values of the fields, which facilitates several network attacks. Our work focuses on web-based device tracking based on the stability and relative uniqueness of the PRNG seed and the hashing key. We demonstrate our device tracking techniques over the Internet with browsers running on multiple Fuchsia devices, in multiple browser modes (regular/privacy), and over multiple networks (including IPv4 vs. IPv6). Our tests verify that device tracking for Fuchsia is practical and yields a reliable device ID.

We conclude with recommendations on mitigating the attacks and their root causes. We reported our findings to Google, which issued CVEs and patches for the security vulnerabilities we disclosed.

View More Papers

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

The Midas Touch: Triggering the Capability of LLMs for...

Yi Yang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Jinghua Liu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Kai Chen (Institute of Information Engineering, Chinese Academy of…

Read More

A Large-Scale Measurement Study of the PROXY Protocol and...

Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More