Inon Kaplan (Independent researcher), Ron even (Independent researcher), Amit Klein (The Hebrew University of Jerusalem, Israel)

This research is the first holistic analysis of the algorithmic security of the Google Fuchsia/gVisor network stack. Google Fuchsia is a new operating system developed by Google in a "clean slate" fashion. It is conjectured to eventually replace Android as an operating system for smartphones, tablets, and IoT devices. Fuchsia is already running in millions of Google Nest Hub consumer products. Google gVisor is an application kernel used by Google's App Engine, Cloud Functions, Cloud ML Engine, Cloud Run, and Google Kubernetes
Engine (GKE). Google Fuchsia uses the gVisor network stack code for its TCP/IP implementation.

We report multiple vulnerabilities in the algorithms used by Fuchsia/gVisor to populate network protocol header fields, specifically the TCP initial sequence number, TCP timestamp, TCP and UDP source ports, and IPv4/IPv6 fragment ID fields. In our holistic analysis, we show how a combination of multiple attacks results in the exposure of a PRNG seed and a hashing key used to generate the above fields. This enables an attacker to predict future values of the fields, which facilitates several network attacks. Our work focuses on web-based device tracking based on the stability and relative uniqueness of the PRNG seed and the hashing key. We demonstrate our device tracking techniques over the Internet with browsers running on multiple Fuchsia devices, in multiple browser modes (regular/privacy), and over multiple networks (including IPv4 vs. IPv6). Our tests verify that device tracking for Fuchsia is practical and yields a reliable device ID.

We conclude with recommendations on mitigating the attacks and their root causes. We reported our findings to Google, which issued CVEs and patches for the security vulnerabilities we disclosed.

View More Papers

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More

SIGuard: Guarding Secure Inference with Post Data Privacy

Xinqian Wang (RMIT University), Xiaoning Liu (RMIT University), Shangqi Lai (CSIRO Data61), Xun Yi (RMIT University), Xingliang Yuan (University of Melbourne)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More

Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication...

Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Read More