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Abstract—Given a dataset of user-chosen passwords, the
frequency list reveals the frequency of each unique password.
We present a novel mechanism for releasing perturbed password
frequency lists with rigorous security, efficiency, and distortion
guarantees. Specifically, our mechanism is based on a novel
algorithm for sampling that enables an efficient implementation
of the exponential mechanism for differential privacy (naive
sampling is exponential time). It provides the security guarantee
that an adversary will not be able to use this perturbed frequency
list to learn anything of significance about any individual user’s
password even if the adversary already possesses a wealth of
background knowledge about the users in the dataset. We prove
that our mechanism introduces minimal distortion, thus ensuring
that the released frequency list is close to the actual list. Further,
we empirically demonstrate, using the now-canonical password
dataset leaked from RockYou, that the mechanism works well
in practice: as the differential privacy parameter ε varies from
8 to 0.002 (smaller ε implies higher security), the normalized
distortion coefficient (representing the distance between the re-
leased and actual password frequency list divided by the number
of users N ) varies from 8.8 × 10−7 to 1.9 × 10−3. Given this
appealing combination of security and distortion guarantees, our
mechanism enables organizations to publish perturbed password
frequency lists. This can facilitate new research comparing
password security between populations and evaluating password
improvement approaches. To this end, we have collaborated with
Yahoo! to use our differentially private mechanism to publicly
release a corpus of 50 password frequency lists representing
approximately 70 million Yahoo! users. This dataset is now the
largest password frequency corpus available. Using our perturbed
dataset we are able to closely replicate the original published
analysis of this data.

I. INTRODUCTION

Passwords are the dominant method of authentication on
the internet, and, despite many attempts to replace them [21],
[8], [2], they are likely to remain entrenched as the dominant
means of authentication [19]. Therefore, it is useful to un-
derstand and characterize the underlying distribution of user
selected passwords. Given passwords from N users a password
frequency list is a multiset (or bag) of non-negative integers
f1 ≥ f2 ≥ . . . ≥ 0 such that

∑
fi = N . Here, fi denotes the

number of users who selected the ith most popular password.

For example, if ‘123456’ is the most common password
than f1 would denote the number of users who selected the
password ‘123456.’ However, the password frequency list does
not include the corresponding passwords.

Password frequency lists from empirical datasets have great
value to security researchers who wish to understand the
nature of an underlying password distribution so that they can
accurately estimate security risks or evaluate various password
defenses. For example, the sum λβ =

∑β
i=1 fi is an approxi-

mate upper bound on the number of accounts that an untargeted
adversary could compromise with β guesses per user. Because
a password frequency list allows us to compute λβ for every
value of β this data can be useful for analyzing defenses
against online attacks (small β) and offline attacks (larger β).
An organization might use this data to help determine how
much key-stretching to perform on its authentication servers
to mitigate damages in the event of an offline attack. Similarly,
consider an organization which implements a k-strikes policy
to protect users against online password attackers. A smaller
value of k can decrease the usability of the authentication
experience, while selecting a larger value of k can reduce
security. The empirical data from password frequency list(s)
could help organizations to make a more informed decision
when considering the trade-off between security and usability.

Despite their usefulness an organization may understand-
ably be wary of publishing password frequency lists for its
own users due to potential security and privacy risks. For
example, Yahoo! allowed Bonneau [5] to collect anonymized
password frequency data from a random sample of 70 million
users and publish some aggregate statistics such as min-
entropy. However, Yahoo! declined to publish these password
frequency lists so that other researchers could use them. In the
absence of provable security guarantees this was a reasonable
decision. In the past researchers have been able to exploit
background knowledge to re-identify individuals in seemingly
‘anonymized’ datasets [28], and it is not unreasonable to expect
that an adversary will have some background knowledge about
the password dataset. For example, an adversary would have
access to data from previous breaches like RockYou and
Adobe.

Consider a toy scenario in which 10 users create passwords
at Yahoo!, with 8 selecting the password ‘123456’ and the
other 2 selecting the password ‘abc123.’ In this case the
frequency list is f = (8, 2). Now imagine that, after Yahoo!
publishes f , the adversary learns the passwords of 9 of
these users (e.g., from a server breach at another service like
RockYou). In this case the adversary could combine f with
his background knowledge to learn the password for the last
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user. While somewhat far-fetched, this scenario illustrates the
potential risk of releasing password frequency lists when the
adversary might have background knowledge.

Contributions: We present a differentially private algo-
rithm for releasing password frequency lists with minimal
cumulative distortion. Differential privacy provably provides
strong security guarantees to users in the dataset. An adversary
will not be able to use this perturbed frequency list to learn
anything of significance about any individual user’s password.
These guarantees will continue to hold even if the adversary
obtains background knowledge about the users in the future.
Even in the extreme example discussed above the adversary
will not be able to extract useful information about the user’s
password from the distorted password frequency list.

At a technical level our algorithm is based on the expo-
nential mechanism of McSherry and Talwar [27]. The key
algorithmic challenge is developing an efficient algorithm to
sample from the exponential mechanism for integer partitions
— a straightforward implementation would require exponential
time and space and there is strong evidence that sampling
from the exponential mechanism is computationally intractable
in the most general case [36]. We use a novel dynamic
programming algorithm to approximately sample from the
exponential mechanism for integer partitions. We prove that
our that algorithm is efficient and that it introduces minimal
L1 distortion to the underlying password frequency list. The
algorithm is of independent interest outside of its application to
releasing password frequency lists. For example, our algorithm
improves upon the differentially private algorithm of Hay et
al. [18] for releasing degree distributions in a social network.

We empirically demonstrate, using the RockYou dataset of
released passwords, that the mechanism works well in practice:
as the differential privacy parameter ε varies from 8 to 0.002
(smaller ε implies higher security), the normalized distortion
coefficient (representing the distance between the released and
actual password frequency list divided by the number of users
N ) varies from 8.8 × 10−7 to 1.9 × 10−3. This combination
of security and distortion guarantees makes it practical for
organizations to release perturbed password frequency lists to
support public research on password security.

As a demonstration, we have collaborated with Yahoo! to
perform perhaps the first intentional release of a large corpus
of password data using our differential privacy approach. This
rich dataset represents approximately 70 million Yahoo! users
and contains frequency lists for more than 50 subsets of these
users based on demographic and behavioral characteristics.
It is our hope that other organizations might follow suite
by collecting and publishing their own differentially private
password frequency lists.

This represents a promising development both for pass-
word research, which is slowly transitioning from analyzing
unintentionally leaked data from breached websites to working
with legitimate data sources, as well as for differential privacy
which is just beginning to gain practical adoption after nearly
a decade of research.

II. BACKGROUND

A. Integer Partitions

A partition of a non-negative integer n ∈ N is an ordered
list of n integers x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 such that

n∑
i=1

xi = n .

We use P (n) to denote the set of all partitions of the integer
n. For example, P (3) = {(1, 1, 1) , (2, 1, 0) , (3, 0, 0)}. Hardy
and Ramanujan [17] showed that asymptotically

|P (n)| ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
,

and Pribitkin [10] proved a very similar upper bound on |P (n)|
for all n ≥ 1. We let P .

=
⋃∞
n=0 P (n) denote the set of all

integer partitions.

Given two partitions x ∈ P (n) and x′ ∈ P (n′) we use

dist (x, x′)
.
=

1

2

max{n,n′}∑
i=1

|xi − x′i| ,

to measure the distance between the two partitions — for
partitions x ∈ P (n) we adopt the convention that xi

.
= 0

whenever i > n. dist is essentially the L1 norm ‖x − x′‖1,
also called the absolute value norm, of the vector x− x′. For
convenience, we choose to normalize by 1/2 because it leads
to a natural interpretation of dist in our passwords context —
if f ∈ P (n) represents the initial password frequency list and
f ′ ∈ P (n) represents the frequency counts after a single user
changes his password then dist (f, f ′) ≤ 1.

a) Measuring Utility: Given an input partition x ∈ P
and an output partition x′ ∈ P we use dist (x, x′) to measure
the quality of the output x′. We stress that our goal of
minimizing cumulative error should not be confused with
related goals like ensuring that the worst case error on a single
entry (e.g., maxi |xi − x′i|) is small or ensuring that the L2
norm ‖x− x′‖2 is small. These goals are strictly weaker than
our goal. For example, if we set x′i = xi + 1 for i ≤ n then
the worst case error would be 1 and the L2 norm would be√
n, but we would have dist (x, x′) = n/2.

b) Password Applications: Given a large dataset D
of passwords (or password hashes) we let fD1 denote the
number of users who selected the most popular password
pwdD1 (typically, pwdD1 will be something like ‘123456’ [20]).
In general, for i ≥ 1 we let fDi denote the number of users
who selected the ith most popular password. Formally,

fDi =
∣∣{u ∈ U : pwdu = pwdDi

}∣∣ ,
where U denotes the set of users and pwdu denotes the
password of user u ∈ U and pwdDi denotes the ith most popular
password in the dataset. We will use ND ∈ N to denote the
number of passwords in a dataset D. Because the dataset D
is usually clear from context we will typically drop the D and
write pwdi and fi and N .

If there are N users in a password dataset D then the
password frequency list f = f1, f2, . . . fN is simply a partition
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of the integer N — when there are only t < N unique
passwords in the dataset we define fi = 0 for i > t.

It is useful for password researchers and system adminis-
trators to know the values of f = f1, . . . , fN . For example,

λβ
.
=

β∑
i=1

fi

is an upper bound on the number of accounts that an (un-
targeted) adversary could compromise with a budget of β
guesses per user. If we let f̃ = f̃1, . . . , f̃N ′ denote a perturbed
password frequency list then the quantity 2 · dist

(
f, f̃
)

is

an upper bound on the error term
∣∣∣λβ − λ̃β∣∣∣ for any adversary

budget β. By contrast, we note that a bound on the L2 norm (or
a bound on the worst case error) does not yield a meaningful
bound on this error term. For example, if f̃i = fi + 1 for all
i ≤ N then the L2 norm is ‖f − f̃‖2 =

√
N , but the error

term is
∣∣∣λβ − λ̃β∣∣∣ = β so the estimate λ̃β is increasingly less

accurate as β grows.

Password frequency lists (or accurate approximations) can
guide the development of password policies and defenses. For
example, suppose that an authentication server changes its k-
strikes policy from k = 3 to the more lenient k = 5. A
password frequency list would help us predict the security
implications of this policy change — an adversary could com-
promise λ5−λ3 more accounts in an offline attack. Similarly,
the data from a password frequency list would allow us to
estimate how many password guesses an offline attacker would
be willing to try in order to crack a password hash. A rational
adversary should stop guessing when his marginal guessing
costs exceed his marginal utility, and we can use a password
frequency list to predict when this will happen. In particular, if
cg (resp. v) denotes the cost of one password guess (resp. value
of a cracked password) then an offline adversary’s marginal
guessing cost (resp. marginal benefit) is cg (1− λβ/N) (resp.
v ·fβ+1/N = v

(
λβ+1−λβ

)
/N ) if he stops after β+1 guesses

instead of β guesses1. An authentication server might alter
the adversary’s marginal guessing costs by make its password
hash function more expensive to compute (e.g., by adopting
key stretching techniques like hash iteration [31] or memory
hard functions [29]). However, this means that the server
incurs greater costs every time a user authenticates. If we
know f1, . . . , fn then we could precisely quantify the security
gains from key stretching. As a final application suppose that
f, g ∈ P encode the frequencies of passwords selected under
two different password composition policies (e.g., must include
numbers, capital letters etc...). If we had f and g then we could
compare the security impact of these policies. Similarly, f and
g might represent frequency lists for passwords chosen by two
different populations of users, e.g. users from the U.S. and
users from the U.K., allowing researchers to analyze factors
impacting user’s password choices.

1An offline adversary with a maximum budget of β + 1 guesses will
only use

(
β + 1

)(
1 − λβ/N

)
+
∑β
i=1 i · fi/N guesses on average.

Thus, the marginal guessing cost is cg
(
β + 1

)(
1 − λβ/N

)
+ cg

∑β
i=1 i ·

fi/N − cg
(
β
(
1− λβ−1/N

)
+
∑β−1
i=1 i · fi/N

)
= cg

(
1 − λβ/N

)
+

cgβ
(
λβ−1/N − λβ/N

)
+ cgβfβ/N = cg

(
1− λβ/N

)
.

B. Differential Privacy

We use the notion of differential privacy [12], [27] to
ensure that the password statistics we release will not harm
individual users. Differential privacy provides a strong infor-
mation theoretic privacy guarantees to each individual in a
dataset, and it has been an active area of research in the
last decade (e.g., see [13]). Informally, a differentially private
mechanism for releasing statistics about a dataset D ensures
that an adversary cannot use the output to make inferences
about any individual in the dataset except inferences that
the adversary would have been able to make without that
individual’s data.

We first introduce the notion of neighboring partitions —
see Definition 1. Intuitively, two password datasets D and D′
are neighbors if we can obtain D′ by adding (or removing)
a single user to the dataset D. In this case we will have
dist (f, f ′) = 1

2 because we will have fi = f ′i for every
index except one, and f ′j = fj + 1 for one index (e.g., when
we add a user with password pwdj).

Definition 1. (Neighboring Partitions) We say that two par-
titions f, f ′ ∈ P are neighbors if dist (f, f ′) = 1

2 , and we
write f ∼ f ′ to indicate this.

Observe that if two password datasets D and D′ are
neighbors then the corresponding frequency lists f and f ′ will
also be neighbors. We do not require that the converse holds.

We are now ready to define differential privacy. To simplify
our presentation we define differential privacy for mechanisms
A : P → P which output integer permutations — of course
the general definition of differential privacy is applicable in
other contexts.

Definition 2. [12] A randomized mechanism A : P → P
preserves (ε, δ)-differential privacy if for any pair f ∼ f ′ ∈ P
and any subset of outcomes S ⊆ P we have

Pr [A (f) ∈ S] ≤ eε Pr [A (f ′) ∈ S] + δ .

When δ = 0 we say that A is ε-differentially private.

Smaller values of ε and δ yield stronger privacy guarantees.
We will think of ε as being a moderately small constant
(typically ε ≤ 1) and we will think of δ as being a negligibly
small value (e.g., δ = 2−100). Note that we will allow our
mechanism to output f̃ ∈ P

(
Ñ
)

given an input f ∈ P (N)

even if N 6= Ñ . We discuss the security implications of this
definition below.

C. Security Implications

Differential privacy offers very strong security and privacy
guarantees. A nice feature of differential privacy is that it
is preserved under post-processing [13]. We will use the
following fact in our discussion of security.

Fact 1. Suppose that the randomized mechanism A : P → P
preserves (ε, δ)-differential privacy and let g : P → Range (g)
be an arbitrary post-processing function. Then the mechanism
g ◦ A also preserves (ε, δ)-differential privacy.

Intuitively, we can take gu to denote any attack that the
adversary might mount against a user u after we publish our
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Term Explanation
N the number of user passwords in a dataset
P (N) the set of all integer partitions of N
P the set of all integer partitions

pwdu the password of user u
pwdi the ith most likely password in D
fi # users u that selected pwdu = pwdi

f = f1 ≥ f2 ≥ f2 . . . Original password frequency list. Also an
integer partition f ∈ P (N)

f̃ a perturbed password frequency list

TABLE I: Notation

password frequency statistics. Notably this also includes any
attack that an adversary with significant background knowl-
edge might mount. Let S ⊆ Range (gu) denote the set of
outcomes that the user u would consider harmful and let f−u
denote the password frequency list after deleting u’s data.
Because gu ◦ A preserves (ε, δ)-differential privacy we have

Pr [gu (A (f)) ∈ S] ≤ eε Pr
[
gu
(
A
(
f−u

))
∈ S

]
+ δ .

Intuitively, this implies adversary’s attack gu must have a
small probability of harming our user u given the perturbed
password frequency list A (f) unless the attack gu already
had a reasonable chance of harming u when we omit his data
entirely! Thus, a differentially private mechanism ensures that
the password frequency list we release will not be useful to an
adversary who is trying to guess a particular user u’s password.
We stress that gu could describe attacks from any current or
future adversary. Even if the adversary learns the passwords for
the first n− 1 users the security guarantees still apply for the
last user. We remark that differential privacy does not ensure
that the adversary won’t be able guess the user’s password
— if the user selected a weak password then he was at risk
before we publish the perturbed frequency lists. However, we
can guarantee that the perturbed password frequency list will
never help the adversary guess the user’s password.

Group Privacy: A mechanism that preserves (ε, δ)-
differential privacy for individual users will also preserve
(2ε, δ · (1 + eε))-differential privacy for groups of size two.
Group differential privacy would imply that the adversary
cannot distinguish between the original dataset and the dataset
in which any two users deleted their records. Thus, we can
still provide strong security guarantees for a user creates
two duplicate accounts with related passwords — albeit with
slightly weaker security parameters. If a user creates more an
more duplicate accounts then the security guarantees would
continue to degrade in this manner.

D. Goal

Our goal is to develop a differentially private mechanism
that is both efficient and accurate.

Efficiency. In our case the range of outcomes P consists of
infinitely many partitions. Furthermore, the input size N can be
quite large.2 We will not be content to simply find a mechanism
that runs in polynomial time in N, 1/ε and log (1/δ). Our goal
is to develop a mechanism that we can actually implement

2Indeed, Bonneau demonstrated that most interesting strength metrics for
a password frequency list require N to be in the millions to be accurately
approximated [5].

and run. Because N is typically large in our applications this
implies our algorithm must run in sub-quadratic time in N .

Accuracy. Given an input partition x ∈ P (N) we want to
ensure that our output partition y ∈ P minimizes cumulative
error (e.g. dist (x, y)). In private data analysis it is desirable
to achieve normalized error O

(
N−1/2

)
so that the error we

introduce to preserve privacy does not exceed our statistical
sampling error which typically scales as O

(
N−1/2

)
. Thus,

our goal will be to ensure that with high probability we have
normalized error dist(x,y)

N ≤ c√
N

for some small constant c.

Standard Techniques. Our goal of minimizing cumulative error
is much stronger than weaker goals like ensuring that the
worst case error on a single entry (e.g., maxi |xi − x′i|) is
small or ensuring that the L2 norm ‖x− x′‖2 is small. These
weaker goals could be achieved with standard techniques for
preserving differential privacy like the Laplacian mechanism or
or the Gaussian mechanism [13]. However, we stress that stan-
dard techniques like these do not guarantee small cumulative
error rates. These mechanisms add noise ei to each component
(e.g., x̃i = xi + ei) where the noise ei is drawn from a
Laplacian distribution of from a Gaussian distribution with the
appropriate parameters (afterwards we can sort the x̃i values
to ensure that x̃i ≥ x̃i+1). Theoretically, the cumulative error
can be as large as dist (x, y) = Ω (N × e−ε). For example, if
we set x′i = xi± 1 for i ≤ N then the worst case error would
be 1 and the L2 norm would be

√
N , but we would have

dist (x, x′) = N/2. We tested these standard mechanisms on
the RockYou password dataset and found that the empirical
error rate was just as high in practice.

III. ANALYSIS OF EXPONENTIAL MECHANISM

Our mechanism for releasing password frequency lists
is based on the exponential mechanism of McSherry and
Talwar [27]. In our context the definition of the exponen-
tial mechanism is relatively simple. Given an input dataset
f ∈ P the exponential mechanism Eε (f) simply outputs
each possible outcome f̃ ∈ P with probability proportional to
exp

(
−ε · dist

(
f, f̃
))

. Intuitively, a partition f̃ ∈ P is less

likely to be output whenever dist
(
f, f̃
)

is large. Theorem 1,
due to McSherry and Talwar [27], states that the exponential
mechanism preserves differential privacy.

Formally, when we sample from Eε (f) the probability of
each outcome f̃ is wf ·exp

(
−ε · dist

(
f, f̃
))

, where wf ∈ R
is the unique constant such that

wf
.
= 1

/∑
f̃∈P

exp
(
−ε · dist

(
f, f̃
)) .

a) Exponential Mechanism is Well Defined: Because
our outcome space P is infinite we need to argue that this
distribution is well defined (i.e. that the constant exists and
wf > 0 ). The proof of Fact 2 is in the appendix. We note
that Fact 2 is a much weaker claim than Theorem 2 below.

Fact 2. The sum
∑
f̃∈P exp

(
−ε · dist

(
f, f̃
))

converges.
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b) The Exponential Mechanism preserves Differential
Privacy: The next result states that the exponential mechanism
does preserve differential privacy. The proof relies on the fact
that dist (f, f ′) = 1

2 for neighboring partitions f ∼ f ′.
Theorem 1. [27] The exponential mechanism Eε preserves
ε-differential privacy.

Theorem 1 is a restatement of the Theorem of McSherry
and Talwar [27] once we observe that the global sensitivity of
the function dist is ∆

.
= maxf∼f ′ dist (f, f ′) = 1

2 . The proof
is quite simple. We include it in the appendix for completeness.

c) The Exponential Mechanism Introduces Minimal
Cummulative Distortion: Theorem 2, our main technical re-
sult in this section, shows that the exponential mechanism
would introduce minimal cumulative distortion dist

(
f, f̃
)

=

O
(√

N/ε
)

if we had an efficient algorithm to sample from
this distribution.

Theorem 2. Let f ∈ P (N), ε > 48π2
√
N

and δ ≥ e1−
√
N/2 be

given and let f̃ ← Eε (f) denote a random sample from the
exponential mechanism. Then except with probability δ we will
have

dist
(
f, f̃
)
≤
c1
√
N + c2 ln

(
1
δ

)
ε

,

where c1 = 2π
√

2
3 + o(1) and c2 = 2 + o(1) are constants.

We note that in all of our experiments we will have ε >
48π2
√
N

and δ ≥ e1−
√
N/2 as N ≥ 107. It is possible obtain

similar results for other ranges of ε and δ, though the constants
c1 and c2 in Theorem 2 would change.

The proof of Theorem 2 is in the appendix. Given f ∈
P (N) we prove that 2 |P (N + d)| is an upper bound on
the number of partitions f ′ ∈ P with dist (f, f ′) = d/2
— see Lemma 4 in the appendix. Applying union bounds
the cumulative probability weight of all such partitions f ′ is
at most 2 |P (N + d)|wf exp (−ε · d/2). Pribitkin [10] proved

that |P (N)| ≤ N−3/4 exp
(
π
√

2N
3

)
so the cumulative proba-

bility weight of all partitions in f ′ with dist(f, f ′) = d/2 will
drop exponentially as d increases. We remark that Theorem 2 is
simply an upper bound on the cumulative error. It is reasonable
to expect that the empirical error will be even lower in practice.
Indeed, this is what we find in Section V.

IV. DIFFERENTIALLY PRIVATE MECHANISM

In the last section we saw that the exponential mechanism
preserves differential privacy and introduces minimal cumula-
tive distortion. However, we still need an efficient algorithm
to sample from the exponential mechanism when N is large
(e.g., N ≈ 7 × 107). A naive sampling algorithm would take
exponential time, and there is strong evidence that there is
no polynomial time algorithm to sample from the exponen-
tial mechanism in general— see discussion in the Related
Work section. However, these results do not imply that it is
hard to sample from the exponential mechanism over integer
partitions. In this section we introduce a novel relaxation of
the exponential mechanism that preserves (ε, δ)-differential

privacy for a negligible value of δ, and we demonstrate that
there is an efficient O

(
N1.5/ε

)
-time algorithm to sample from

this relaxed exponential mechanism.

A. A Relaxation of the Exponential Mechanism

Our first step in developing an efficient sampling algorithm
is to propose a novel relaxation of the exponential mechanism.
The standard exponential mechanism places a probability
weight on each partition f̃ ∈ P , but there are infinitely
many partitions. In our relaxation we allow the mechanism to
completely ignore partitions f̃ ∈ P that are ‘very far’ from the
true distribution (e.g., dist

(
f, f̃
)
≥ Ω

(√
N+ln(1/δ)

ε

)
). Our

relaxed mechanism will preserve (ε, δ)-differential privacy for
a negligibly small value of δ. Like the standard exponential
mechanism the relaxed exponential mechanism will introduce
minimal cumulative distortion.

Let S = {Sf ⊆ P} denote a family of subsets of
integer partitions — one for each partition f ∈ P . Given a
set family we define the S-restricted exponential mechanism.
The probability of any outcome f̃ /∈ Sf under our relaxed
mechanism EεS (f) is the probability of the same outcome
under the original exponential mechanism Eε (f) conditioned
on the event that the outcome is not in Sf . Intuitively, we
could think of the restricted exponential mechanism EεS (f)
as repeatedly running the basic exponential mechanism until
we get an output value that is not in our restricted set Sf .
Formally, we have

Pr
y←EεS(f)

[
y ∈ Sf

]
= 0 ,

and for every x /∈ Sf

Pr
y←EεS(f)

[
y = x

]
= Pr

y←Eε(f)

[
y = x y /∈ Sf

]
.

We can show that the restricted exponential mechanism pre-
serves (ε, δ)-differential privacy as long as each of the re-
stricted sets Sf in our set family has negligibly small proba-
bility mass — see Definition 3.

Definition 3. We say that a set family S = {Sf ⊆ P} is
δ-negligible if for every partition f ∈ P we have

Pr
y←Eε(f)

[y ∈ Sf ] ≤ δ .

Theorem 3 states that our modified exponential mechanism
preserves (ε, δ′)-differential privacy for a negligibly small
value δ′ as long as the underlying set family S is δ-negligible.
The intuition behind the proof of Theorem 3 is that the statis-
tical distance between the distribution induced by the standard
exponential mechanism Eε (f) and the distribution induced by
our modified version EεS (f) is negligibly small. The standard
exponential mechanism preserves pure ε-differential privacy
(Theorem 1) and the δ′ term accounts for the negligibly small
statistical distance between the two distributions.

Theorem 3. For any δ-negligible set family S the mechanism
EεS preserves (ε, δ′)-differential privacy for δ′ = δ + eεδ.

Corollary 1 extends Theorem 1 to bound the error of our
modified exponential mechanism. Corollary 1 follows easily
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from Theorem 1 because the statistical distance between the
modified exponential mechanism and the regular exponential
mechanism is negligibly close.

Corollary 1. Let f ∈ P (N), ε > 48π2
√
N

and δ ≥ e1−
√
N/2

be given and let f̃ ← Eε (f) denote a random sample from
the modified exponential mechanism with a δ1-negligible set
family S = {Sf ⊆ P}. Then except with probability δ1 + δ2
we will have

dist
(
f, f̃
)
≤
c1
√
N + c2 ln

(
1
δ2

)
ε

,

where c1 = 2π
√

2
3 + o(1) and c2 = 2 + o(1) are constants.

In fact for our particular restricted set family the above
claim will hold with probability δ2 because the set Sf of
restricted partitions will only contain partitions that are far
away from f .

B. Restricted Set Families

In this section we introduce the restricted set family used
by our relaxed exponential mechanism. Intuitively, we define
a set Sdf which contains only partitions that are distance ≥ d
from f . Formally, given a fixed integer d ∈ N and a fixed
partition f ∈ P we define

Uj
.
= max

x∈P
dist(f,x)≤d

xj and Lj
.
= min

x∈P
dist(f,x)≤d

xj . (1)

Intuitively, Uj (resp. Lj) is an upper (resp. lower) bound on
the value f̃j for any partition f̃ with distance dist

(
f, f̃
)
≤ d.

A partition f̃ is restricted if and only if we can find an index
i such that f̃i is outside of the range [Li, Ui]. Formally,

Sdf
.
= {x ∈ P ∃i ≥ 1.xi /∈ [Li, Ui]} .

Thus, for any partition f̃ ∈ P with dist
(
f, f̃
)
≤ d we have

f̃ /∈ Sdf . This follows immediately from the definition of Ui
and Li. However, the converse is not necessarily true (i.e. there
may be partitions f̃ /∈ Sdf with dist

(
f, f̃
)
≥ d).

We first observe, Lemma 1, that we can ensure that
our set family S is δ-negligible by choosing d =

Ω
(
ε−1
√
N + ε−1 ln δ−1

)
. Thus, by Theorem 3 it suffices to

show that we can run the modified exponential mechanism
with the set family S =

{
Sdf f ∈ P

}
.

Lemma 1. Given f ∈ P (N) let Sdf =
{x ∈ P ∃i.fi /∈ [Li, Ui]} with the Ui’s and Li’s defined
in equation 1. Let ε > 48π2

√
N

and δ ≥ e1−
√
N/2 and let

df = c1·
√
N−c2·ln δ
ε , where the constants c1 = 2π

√
2/3 +o(1)

and c2 = 2 + o(1) are the same as in Theorem 2. Then the
set family S =

{
S
df
f f ∈ P

}
is δ-negligible.

Proof: We already observed that Sdf ⊆
{x ∈ P dist (x, f) ≥ d}. Now the proof of Lemma 1

follows immediately from Theorem 2, where we show that

Pr
y←Eε(f)

[dist (x, f) ≥ df ] ≤ δ .

C. Dynamic Programming

Our implementation of the modified exponential mecha-
nism EεS(f) uses dynamic programming. To gain some intu-
ition for why dynamic programming is an appropriate tech-
nique we first observe that for any partition f̃ ∈ P the weight
of f̃ decomposes nicely. In particular, for any index t we have

e−
∑
i|f̃i−fi|·ε/2 =

(
e−

∑
i<t|f̃i−fi|·ε/2

)(
e−

∑
i≥t|f̃i−fi|·ε/2

)
.

This structure suggests that we might be able develop a recur-
sive formula to express the cumulative weight of all partitions
that are consistent with the first t− 1 values f̃1, . . . , f̃t−1.

Given a partition f̃ = f̃1, f̃2, . . . we use f̃ t = f̃t, f̃t+1, . . .
to denote the partition formed by dropping the first t−1 values
of f̃ . Suppose that at some point during the sampling procedure
we have selected values for f̃1, . . . , f̃t−1 we can view f̃ t as a
potential completion of our sampling procedure. In general, a
completion x ∈ P of f̃1, . . . , f̃t−1 is valid if and only if x1 ≤
f̃t−1 and x̃j ∈ [Lj+t, Uj+t] for all j ≥ 1 (so that f̃ /∈ Sdf ). We
use

Sdft
.
= {x ∈ P ∃j ≥ 1.xj /∈ [Lt+j , Ut+j ]}

to denote the set of completions that are excluded by the set
Sdf .

We are now ready to introduce a formula for computing
weights in our sampling procedure. We set

wi,U,ε
.
=
∑
n≥0

∑
x∈P(n)\Sd

fi

x1=U

exp
(
−ε · dist

(
f i, x

))
.

Intuitively, given any f̃1 ≥ . . . ≥ f̃i−1 ≥ U , wi,U,ε represents
the cumulative weight of all valid candidate completions f̃ i
with first component x1 = U . Thus, the weights wi,U,ε can be
used to sample the next value f̃i. In particular, for any U ≤ T
we have

Pr
f̃←EεS(f)

[
f̃i = U f̃i−1 = T

]
=
wi,U,ε
Wi,T,ε

, (2)

where

Wi,T,ε =

min{Ui,T}∑
U ′=Li

wi,U ′,ε .

We first note that if we had the values wi,U,ε for each pair
(i, U) such that (1) i ≤ N + d and (2) Li ≤ U ≤ Ui then we
could easily sample from the modified exponential mechanism
by repeatedly invoking equation 2. Once we have sampled
f̃1, . . . , f̃i−1 then we can simply apply equation 2 to obtain
the next value f̃i. 3

It remains to show that we can compute the values wi,U,ε
efficiently. We first note that there are at most 2dN + 2d2 =

3We will pretend that there is a dummy value f̃0
.
= f1 + 2d to handle the

edge case when we sample the first value f̃1.
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O
(
N1.5−ln δ

ε

)
pairs (i, U) that satisfy both of our constraints.

Lemmas 2 and 3 demonstrate that there is a simple recursive
formula for expressing wi,U,ε using either the values wi+1,U ′,ε

or the values wi,U,ε.

Lemma 2. For all (i, U) such that i ≤ N + d and Li ≤ U ≤
Ui we have

wi,U,ε = exp

−ε |U − fi|
2

·min{U,Ui+1}∑
U ′=Li+1

wi+1,U ′,ε .

The proof of Lemma 2 is in the appendix. We could fill
in our dynamic programming table using only the recursive
formula from Lemma 2, but this would require O(d) work per
entry. Our next recursive formula, Lemma 3, allows us to fill
in each cell in our dynamic programming table in (amortized)
constant time per cell. Lemma 3 only allows us to compute
wi,U,ε if U > Li; Otherwise, if U = Li we need to use Lemma
2. Fortunately, we only need to do this O(N) times so our total
work is still O(Nd). Lemma 3 follows easily from Lemma 2.

Lemma 3. For all (i, U) such that i ≤ N + d and Li < U ≤
Ui we have wi,U,ε =

e−ε·∆(U,i)/2wi,U−1,ε +
(
e−ε·|U−fi|/2

)min{U,Ui+1}∑
U ′=U

wi+1,U ′,ε ,

where

∆ (U, i) =

{
1, if U ≥ fi + 1

−1, otherwise.

Proof: We rely on Lemma 2. We have

wi,U,ε = e−ε·|U−fi|/2
min{Ui+1,U}∑
U ′=Li+1

wi+1,U ′,ε ,

and

wi,U−1,ε = e−ε·|U−1−fi|/2
min{Ui+1,U−1}∑

U ′=Li+1

wi+1,U ′,ε .

Thus,

wi,U,ε =

(
e−ε·|U−fi|/2

e−ε·|U−1−fi|/2

)
wi,U−1,ε

+ e−ε×|U−fi|/2
min{U,Ui+1}∑

U ′=U

wi+1,U ′,ε .

where
e−ε·|U−fi|/2

e−ε·|U−1−fi|/2
= e−ε·∆(U,i)/2 .

Algorithm 1 Exponential Mechanism: Publish Frequency Vec-
tor

Sample
Input: f ∈ P (N), ε > 0, δ > 0.
d← c1·

√
N−c2·ln δ
ε . c1 = 2π

√
2/3 + o(1) and

. c2 = 2 + o(1) from Thm 2
for i = 1, . . . , N + d do

Ui ← GETUPPERBOUND(i, d, f)
Li ← GETLOWERBOUND(i, d, f)

f̃0 ← f1 + d . Dummy Value for Edge Case

for i = 1, . . . , N + d do
Umax ← min{f̃i−1, Ui}

. f̃i cannot be bigger than f̃i−1 or Ui
W ← 0
for U ′ = Li, . . . , Umax do

WU ′ ← COMPWEIGHTS(U ′, i+ 1, d, f, ε)
W ←W +WU ′

r ← Unif (0, 1)
for U ′ = Li, . . . , Umax do

r ← r − WU′
W

if r ≤ 0 then
f̃i ← U ′

break
f̃ ←

(
f̃1, . . . , f̃N+d

)
return f̃

a) Dynamic Programming Algorithm: Our efficient
sampling algorithm consists of two phases: preprocess-
ing and sampling. During the preprocessing phase, Algo-
rithm 2, we compute all of the weights wi,U,ε. Algorithm
2 relies on the helper functions GetUpperBound and
GetLowerBound, which return the values Ui and Li re-
spectively. These helper functions are described in Algorithm
3. During the second phase, Algorithm 1, we repeatedly
apply equation 2 to sample from the restricted exponential
mechanism. A simple amortized analysis of algorithm 3 shows
that we can compute each upper bound Ui and each lower
bound Li in time O (Ui) and O (Li) respectively. Thus, the
total time spent computing upper/lower bounds is at most∑N+d
i=1 Ui + Li = O (Nd).

We now show that our sampling algorithm is efficient and
correct.

Theorem 4. Algorithm 1 runs in time and space
O
(
N
√
N
ε +N ln δ−1

)
and correctly samples from the relaxed

exponential mechanism EεS .

Proof: (sketch) Assume inductively that we have correctly
computed the weights wi′,U,ε for i′ > i. Whenever U ≥ Li +
1 then Lemma 3 implies that we obtain the correct weight
wi,U,ε in Algorithm 2. Similarly, whenever U = Li Lemma 2
implies that we will compute the correct value of wi,U,ε. For
the base cases we note that whenever U /∈ [Li, Ui] we must
have wi,U,ε = 0 and whenever U = 0 and fi = 0 we have

wi,U,ε =
∑
n≥0

∑
x∈P(n)\Sd

fi

x1=U

exp
(
−ε · dist

(
f i, x

))
= e−ε·0 = 1 .
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Algorithm 2 Exponential Mechanism: Preprocessing Stage
function COMPWEIGHTS(U, i, d, f, ε)

key ← (U, i)
if DP.Contains(key) then

return DP.GetV alue(key)

Ui ← GETUPPERBOUND(i, d, f), and
Li ← GETLOWERBOUND(i, d, f).
if U /∈ [Li, Ui] then return 0

if fi = 0 & U = 0 then return 1

Ui+1 ← GETUPPERBOUND(i+ 1, d, f), and
Li+1 ← GETLOWERBOUND(i+ 1, d, f).
val← 0
if U ≥ Li + 1 then

∆ (U, i)←
{

1, if U ≥ fi + 1

−1, otherwise.

wi,U−1,ε ← COMPWEIGHTS(U − 1, i, d, f, ε)
val← val + e−ε×∆(U,i)/2 × wi,U−1,ε

if U ≤ Ui+1 then
wi+1,U,ε ← COMPWEIGHTS(U, i+ 1, d, f, ε)
val← val + e−ε|U−fi|/2 × wi+1,U,ε

else
for U ′ = Li + 1, . . . ,min {U,Ui+1} do

WU ′ ← COMPWEIGHTS(U ′, i+ 1, d, f, ε)
W ←W + e−ε|U−fi|/2 ·WU ′

DP.Add(key, val)
return val

Correctness of Algorithm 1 now follows from equation 2.

The most expensive step is filling in the dynamic pro-
gramming table in Algorithm 2. This requires time and space
O(Nd) where d = O

(√
N−ln δ
ε

)
.

V. EXPERIMENTAL RESULTS

In this section we demonstrate that our dynamic program-
ming based implementation of the exponential mechanism is
efficient enough to release password frequency statistics for
real world datasets.

A. Experimental Setup

1) Implementation: We implemented Algorithm 1 in C#.
Our experiments were run on a computer with a 3.00 GHz
Intel Core i7-4610M CPU and 16 GB of RAM.

2) Password Dataset: We used data from the RockYou
password breach [20] to analyze Algorithm 1 empirically. The
RockYou dataset contains passwords from N ≈ 32.6 million
RockYou users, but the dataset only contains ≈ 14.3 million
different passwords. Approximately, 11.9 million RockYou
users selected a unique password. The other ≈ 2.5 million
passwords were shared by multiple users. The most popular
password (pwd1 = ‘123456’) was shared by ≈ 0.3 million
RockYou users (p1 ≈ 0.01). These passwords were leaked
when hackers broke into the RockYou authentication server
where the passwords were unfortunately stored in the clear.

Algorithm 3 Exponential Mechanism: Helper Functions
. Returns Ui

.
= max {xi x ∈ P ∧ dist (x, f) ≤ d}.

Runs in time O (d).
function GETUPPERBOUND(i, d, f )

U ← fi . Current height
A← 2d . Remaining addition budget

. Find how much we could increase fi by adding A
items. To ensure that fj ≥ fj+1 for all j we may need
to use some of our addition budget to increase fj for
some j < i along the way.

while A ≥ 0 do
j ← min {j ≤ i fj ≤ U}
. We can find j in time O (log(i− j + 1)) using

binary search, and we reduce potential (e.g., A)
by i− j + 1 in each iteration.

∆A← i− j + 1
A← A−∆A
if A ≥ 0 then U ← U + 1
else return U

return U

. Returns Li
.
= min {xi x ∈ P ∧ dist (x, f) ≤ d}.

Runs in time O(d).
function GETLOWERBOUND(i, d, f )

L← fi . Current height
R← 2d . Remaining removal budget

. Find how much we could increase fi by removing R
items. To ensure that fj ≥ fj+1 for all j we may need
to use some of our removal budget to decrease fj for
some j < i along the way.

while R ≥ 0 ∧ L > 0 do
j ← max {j ≥ i fj ≥ L}
. We can find j in time O (log(i− j + 1)) using

binary search, and we reduce potential (e.g., R)
by i− j + 1 in each iteration.

∆R← j − i+ 1
R← R−∆R
if R ≥ 0 ∧ L > 0 then L← L− 1

return L

RockYou users were not required to select passwords contain-
ing a mix of upper and lower case letters or a mix of numbers
and letters.

3) Experiment: In each of our experiments we ran Algo-
rithm 1 to sample from the restricted exponential mechanism
EεSd using the restricted set family Sd from Section IV.
In each of our experiments we varied the parameter ε ∈
{8, 4, 2, 1, 0.5, 0.25, 0.2, 0.1, 0.05, 0.02, 0.002} and we fixed
δ = 2−100. We recall that Lemma 1 implies that Sd is at least
δ-negligible for d ≥ O

(√
N−ln δ
ε

)
. Theoretically, the number

of entries in the dynamic programming table is bounded by
2d2 + 2dN , but this number can be even smaller in practice.
Figure 1 shows how the number of entries in our dynamic
programming table increases with 1/ε — the 1/ε axis is shown
in log scale so that each point is visible. For the smallest values
of ε the dynamic programming table was a little bit too big
to fit in memory. We overcame this problem by only storing
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ε dist σ max min
8 28.8 4.52 42 18
4 228.8 11.79 250 192
2 663.5 20.30 717 623
1 1,330.5 37.17 1,416 1,241

0.5 2,328.2 56.3 2,479 2,199
0.25 3,768.1 89.9 3,944 3,427
0.2 4,355.7 116.7 4,638 4,070
0.1 6,752.6 243.7 7,450 6,237

0.05 10,204.2 356.7 11,143 9,305
0.02 17,542.9 699.1 19,661 16,101
0.002 61,937.1 4,004.9 71,387 53,658

TABLE II: Summary of Results. # samples = 100 in each
trial, and δ ≤ 2−100

pieces of the dynamic programming table in memory and
recomputing the rest on the fly. Algorithm 1 consists of two
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Fig. 1: 1/ε vs. Dynamic Programming Table Size

phases: a pre-processing stage and the actual sampling phase.
While the pre-processing stage, CompWeights, tended to
be a bit more expensive we only need to complete this stage
once for each value of ε. Once the pre-processing stage was
complete we can run the sampling algorithm Sample to draw
many independent samples from EεSd . For each value of ε we
drew a set F̃ε ⊂ P of

∣∣∣F̃ε∣∣∣ = 100 independent samples EεSd
and measured the average distance

dist =
∑
f̃∈F̃ε

dist
(
f, f̃
)
.

B. Results

Our results are summarized in Figure 2 and in Table II.
Figure 2 plots the average normalized cumulative distance,
dist/N , versus 1/ε. The 1/ε axis is shown in log-scale so that
each of the points is visible. Privacy increases as we move to
the right. The red bars indicate the maximum and minimum
values of dist

(
f, f̃
)
/N over all samples f̃ ∈ F̃ε. Table II

shows the precise numeric values of dist, σ, max and min.

1) Discussion: In each of our experiments the cumulative
error was quite small. Even for very high privacy parame-
ters (e.g., ε = 0.002) the normalized cumulative error (i.e.
dist

(
f, f̃
)
/N ) was less than 2.2×10−3 in all hundred trials.

Thus, the sanitized frequency list f̃ will still be useful for
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Fig. 2: 1/ε vs. dist/N . Privacy increases as we move to the
right. Red bars indicate maximum and minimum values of dist
over 100 trials.

password researchers (e.g., λ̃β will be accurate estimate of λβ
the number of passwords that could be compromised with β
guesses per user ).

a) Efficiency Considerations: As we saw in Figure
1 it becomes increasingly challenging to fit the dynamic
programming table into memory as 1/ε increases. We believe
that the memory requirements could be significantly reduced
in practice. Currently, we need to set d = O

(√
N+ln(1/δ)

ε

)
so

that Lemma 1 guarantees that the set family Sd is δ-negligible.
However, we found strong empirical evidence that the sets Sdf
are δ-negligible for much smaller values of d. For example,
we found that outputs from the mechanisms EεSd/100 and EεSd
appear to be indistinguishable. Future work might explore the
possibility of computing instance specific upper bounds on the
value of d. Such bounds might drastically reduce the space
requirements of our sampling algorithm.

VI. YAHOO! DATASET

With Yahoo!’s permission we used our differentially
private algorithm to release password frequency
statistics for approximately 70 million Yahoo! passwords
originally collected by Bonneau in 2012 [5]. The data
is available for download at https://goo.gl/lG6MHd,
with the main data file having a SHA-256 digest of
061137ea3cc129c7d9f501295cb194e0c6fa158ac-
ac702f893cba3cfd5f44efe. This dataset includes
frequency lists for many subsets of the data for different
groups of users. Comparing statistics between different
groups enabled many novel observations, such as a stronger
distribution of passwords chosen by older users or those with
a payment card stored on file.

a) Original privacy considerations: To mitigate secu-
rity risks inherent to plaintext password data, these frequency
lists were collected by deploying a proxy server in front of live
login servers to record a pseudorandom function4 f (pwdu, s)
of each password used in a successful authentication (only
recording an observation once per individual user). Each
observation was added to multiple frequency lists based on

4HMAC-SHA256 was used as the pseudorandom function f .
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demographic facts of the user logging in. The secret key s
used in computing the pseudorandom function was discarded
after collecting the frequency lists and before they were made
available to the researcher, destroying information about the
individual passwords and leaving only a set of frequency lists.

While Yahoo! allowed Bonneau [5] to publish a summary
analysis of these passwords, they declined to allow publication
of any of the password frequency lists themselves.

b) Selecting ε: Because we are releasing frequency lists
for multiple demographic groups we need to take into consid-
eration the fact that a single user’s data might occur in multiple
groups. While there are 52 different groups of users including
the “All Users” group an individual user could occur in at most
23 different groups. For example, there are five different age
groups (13 − 24, 25 − 34, 35 − 44, 45 − 54 and ≥ 55), but
an individual user can be a member of at most one of these
groups. Differential privacy offers a nice composition guaran-
tee in this instance: if we run an (ε/23, δ/23)-differentially
private algorithm to release the password frequency lists for
each group then the composite mechanism preserves (ε, δ)-
differential privacy [13]. We set εall = 0.25 for the “All
Passwords” group and we set ε′ = 0.25/22 for a composite
privacy level of ε = εall + 22 · ε′ = 0.5. In each case we set
δ′ < 2−100 so that the composite value of δ = 23 · δ′ was
negligibly small.

c) Results: For each frequency list to be published, we
have re-computed the same statistics computed in Bonneau’s
original paper [5] using our sanitized data. The results are
shown in Table III. The metrics are defined in [5], but briefly:

• N represents the total of passwords observed (M in
the notation of [5])

• λ̃β represents5 the size of a uniform distribution with
equivalent resistance to guessing by an attacker with
a fixed budget of β guesses, expressed in bits. λ̃1 is
equivalent to the min-entropy H∞.

• G̃α represents the size of a uniform distribution with
equivalent resistance to guessing by an attacker who
makes enough guesses to have a minimum probability
α of success, expressed in bits.

Of the 52 distributions published, all but 3 produced
virtually indistinguishable results from those in the original
analysis, differing from the published statistics (except for the
apparent number of users) by no more than 0.1 bits. Part of
this is the fact that these metrics were originally reported on
a logarithmic scale (e.g. “in bits”). Fine-grained data was not
published and it was argued that this was not necessary or
useful for practical security analysis. The exceptions (Korean
language users, users with more than 5 password resets, and
users with more than 5 password changes) were all relatively
small groups featuring fewer than 1 million users.

d) Discussion: Once again the empirical accuracy of
our algorithm greatly exceeded our theoretical error bounds.
Our theoretical results already imply reasonably strong bounds

5Note that earlier we used λ̃ to represent λ computed on a perturbed dataset.
In this section we omit this as it is clear from context if this value is computed
on the original or perturbed data.

on the error of password statistics like λ̃β or G̃α. In par-
ticular we know that with high probability we will have
dist

(
f, f̃
)
≤ d with d = O(

√
N/ε). For the purposes of

estimating λ̃β or G̃α the worst case is when f̃1 = f1 + 2 · d.
In this case our estimate of the min-entropy λ̃1 might be off
by a factor of at most

log2

(
N

f1

)
− log2

(
N

f1 + 2 · d

)
= log2

(
f1 + 2 · d

f1

)
,

bits. Even this worst case bound is relatively small for pass-
word datasets with a larger f1. If we assume that f1/N ≈
1%, as was observed for most of the frequency lists in
the Yahoo! corpus, then the theoretical error would scale
as log2

(
0.01·N

0.01·N+2+
√
N/ε

)
. Thus the error approaches 0 as

N →∞, but it might still noticeable for smaller sample sizes
(e.g., Korean language users, users with more than 5 password
resets, and users with more than 5 password changes).

VII. RELATED WORK

a) Privacy Models: De-anonymization attacks [28],
[35] highlight the problems with heuristic approaches to data
sanitization (e.g., omitting “personally identifiable informa-
tion” from the dataset). In response to de-anonymization at-
tacks researchers began to propose formal data privacy models
like k-anonymity [35], [32] and `-diversity [25]. We follow
the framework of differential privacy [12], because it provides
the strongest and most rigorous privacy guarantees. Unlike
k-anonymity and `-diversity, differential privacy is compos-
able and the privacy guarantees hold against an adversary
with arbitrary amount of background knowledge. Kifer and
Machanavajjhala [22] argued that even differential privacy
might not provide sufficient privacy guarantees whenever we
want to hide the influence of an individual. Indeed, this is an
important consideration in settings where an individual can
influence the records of many other individuals (e.g., genetic
datasets). However, in our passwords setting it is reasonable
to assume the user’s secret decision to select one password
instead of another will not influence the passwords that other
users select6.

b) Differential Privacy: There is a vast body of litera-
ture around differential privacy. This work has explored tighter
composition bounds [14], impossibility results[9], differential
privacy for social networks etc.. We do not have enough space
to discuss the vast literature on differential privacy. Instead
we refer an interested reader to the textbook of Dwork and
Roth [13] which contains an excellent summary of much of
this research. While differentially private algorithms typically
perturb the answers to queries to preserve privacy [12], small
perturbations do not necessarily destroy the utility of these
answers for a data analyst. In fact, Dwork et al. [11] recently
showed that differential privacy can have the positive side
effect of preventing over-fitting!

Hay et al. [18] considered the problem of releasing the
degree distribution of a graph in a differentially private manner.
At a fundamental level a degree distribution is an integer
partition. We note our algorithm provides stronger utility

6We are assuming of course that the same human doesn’t create hundreds
of duplicate accounts.
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Original Data Sanitized Data
N

ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5 Ñ

ˆ̃
λ1

ˆ̃
λ10

ˆ̃
λ100

ˆ̃G0.25
ˆ̃G0.5

all passwords 69301337 6.5 9.1 11.4 17.6 21.6 69299074 6.5 9.1 11.4 17.6 21.6
gender (self-reported)

female 30545765 6.9 9.3 11.5 17.2 21.1 30533392 6.9 9.3 11.5 17.2 21.1
male 38624554 6.3 8.8 11.3 17.7 21.8 38617094 6.3 8.8 11.3 17.7 21.8

age (self-reported)
13–24 18199547 6.3 8.7 11.1 16.7 20.9 18198383 6.3 8.7 11.1 16.7 20.9
25–34 22380694 6.2 8.8 11.2 17.1 21.2 22382478 6.2 8.8 11.2 17.1 21.2
35–44 12983954 6.8 9.4 11.7 17.4 21.3 12985267 6.8 9.4 11.7 17.4 21.3
45–54 8075887 7.3 9.8 11.8 17.3 21.3 8075158 7.3 9.8 11.8 17.4 21.3
≥ 55 7110689 7.5 9.8 11.8 17.3 21.4 7110081 7.5 9.8 11.8 17.3 21.4

language preference
Chinese 1564364 6.5 8.6 11.1 17.3 22.0 1571348 6.5 8.7 11.1 17.2 21.8
German 1127474 7.4 9.7 11.3 15.8 19.7 1132306 7.4 9.6 11.2 15.8 19.5
English 55805764 6.5 9.0 11.3 17.4 21.5 55798806 6.5 9.0 11.3 17.4 21.5
French 2084219 6.9 9.0 10.9 14.8 18.6 2086600 6.9 9.0 10.9 14.8 18.6
Indonesian 1061540 5.5 7.9 10.2 14.3 17.0 1063979 5.5 7.9 10.2 14.2 17.0
Italian 811133 6.8 9.0 10.7 14.5 18.0 812764 6.9 9.0 10.7 14.5 18.0
Korean 530759 7.5 9.5 11.7 18.1 22.7 560670 7.6 9.1 10.7 16.8 21.6
Portuguese 2060256 6.5 9.0 11.0 15.6 18.8 2064086 6.5 9.0 11.0 15.6 18.8
Spanish 3065901 6.6 9.1 11.0 15.6 19.7 3068101 6.7 9.2 11.0 15.6 19.7

tenure of account
≤ 1 y 5182527 6.9 9.1 11.7 18.0 22.5 5183617 6.9 9.2 11.7 18.0 22.5
1–2 years 5182527 6.9 9.1 11.7 18.0 22.5 5182550 6.9 9.2 11.7 18.0 22.5
2–3 years 12261556 6.2 8.6 11.2 17.7 21.8 12260532 6.2 8.6 11.2 17.7 21.8
3–4 years 10332348 6.2 8.8 11.3 17.5 21.6 10334603 6.2 8.8 11.3 17.5 21.6
4–5 years 9290840 6.1 8.8 11.2 17.2 21.2 9287123 6.1 8.8 11.2 17.2 21.2
≥ 5 years 29104856 6.8 9.3 11.5 17.2 21.2 29093199 6.8 9.3 11.5 17.2 21.2

password requirements at registration
none 20434875 6.6 9.2 11.4 16.8 20.7 20426607 6.6 9.2 11.4 16.8 20.7
6 char. minimum 13332334 6.5 9.0 11.4 17.6 21.6 13329231 6.5 9.0 11.4 17.6 21.6

last recorded login
< 30 days 32627777 6.5 9.0 11.4 17.5 21.5 32617294 6.5 9.0 11.4 17.5 21.5
< 90 days 55777259 6.5 9.0 11.4 17.5 21.5 55777259 6.5 9.0 11.4 17.5 21.5
> 90 days 8212643 7.0 9.5 11.7 17.7 21.9 8212643 7.0 9.5 11.7 17.7 21.9

number of login locations
1 16447906 6.0 8.6 11.2 17.1 21.1 16444143 6.0 8.6 11.2 17.1 21.1
≥2 52853431 6.7 9.2 11.5 17.7 21.7 52838680 6.7 9.2 11.5 17.7 21.7
≥ 10 17146723 7.3 9.7 11.8 18.3 22.6 17142893 7.3 9.7 11.8 18.3 22.6

number of password changes
none 52117133 6.2 8.8 11.2 17.1 20.9 52104736 6.2 8.8 11.2 17.1 20.9
1 9608164 8.3 10.4 12.3 18.8 23.2 9605232 8.3 10.4 12.3 18.8 23.2
>1 7576040 8.6 10.7 12.5 19.5 24.2 7579817 8.6 10.7 12.5 19.5 24.2
≥5 930035 9.1 10.9 12.7 19.7 25.9 953730 9.1 10.3 11.6 19.0 25.4

number of password resets (forgotten password)
none 61805038 6.4 8.9 11.3 17.3 21.3 61788266 6.4 8.9 11.3 17.3 21.3
1 4378667 8.2 10.5 12.5 19.2 23.8 4382442 8.2 10.5 12.5 19.2 23.7
>1 3117632 8.7 10.8 12.8 19.7 24.6 3123591 8.7 10.8 12.7 19.6 24.5
≥5 387469 8.7 10.6 12.8 19.9 26.6 424250 8.7 9.3 10.5 17.0 23.9

amount of data stored with Yahoo!
1st quartile 9830792 5.6 8.2 10.8 17.3 21.5 9825880 5.6 8.2 10.8 17.3 21.5
2nd quartile 20702119 6.3 8.8 11.3 17.5 21.5 20700076 6.3 8.8 11.3 17.5 21.5
3rd quartile 21307618 6.8 9.3 11.5 17.5 21.4 21305961 6.8 9.3 11.5 17.5 21.4
4th quartile 17447029 7.6 10.0 11.9 17.8 22.0 17443212 7.6 10.0 11.9 17.8 22.0

usage of different Yahoo!features
media sharing 5976663 7.7 10.1 12.0 18.0 22.3 5978011 7.7 10.0 12.0 18.0 22.3
retail 2139160 8.8 10.5 11.9 16.8 21.4 2141012 8.8 10.5 11.9 16.8 21.3
webmail 15965774 6.3 8.8 11.3 17.4 21.2 15961586 6.3 8.8 11.3 17.4 21.2
chat 37337890 6.2 8.7 11.2 17.1 21.2 37328344 6.2 8.7 11.2 17.1 21.2
social networking 14204900 7.1 9.6 11.7 17.7 21.8 14206515 7.1 9.6 11.7 17.7 21.8
mobile access 20676566 6.7 9.3 11.4 17.1 21.1 20673120 6.7 9.3 11.4 17.1 21.1
Android client 1359713 8.3 10.3 12.0 17.3 21.5 1365725 8.3 10.3 11.8 17.2 21.4
iPhone client 6222547 8.1 10.1 11.9 17.6 21.6 6225078 8.1 10.1 11.9 17.6 21.6
RIM client 3843404 7.6 10.0 11.8 17.2 21.1 3846342 7.6 10.0 11.8 17.2 21.0

TABLE III: Statistics for the original Yahoo! password distributions collected and published by Bonneau in 2012 [5] (left columns)
and recomputation of those statistics using our public release of the same data sanitized with our differential privacy approach
(right columns). Statistics for the sanitized distribution are italicized when they are different from those originally published (to
the precision originally published).
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guarantees than [18]. Their algorithm has the theoretical guar-

antee that
∑
i

∣∣∣fi − f̃i∣∣∣2 = O
(√

N log3N/ε2
)

, while our
algorithm provides the much stronger guarantee for L1 error∑
i

∣∣∣fi − f̃i∣∣∣ = O
(√

N/ε
)

. The former requirement would be

satisfied by setting f̃i = 1 + fi for each i <
√
N log3N/ε2,

but then we would have cumulative error dist
(
f, f̃
)

=

O
(√

N log3N/ε2
)

. Thus, our algorithms could also prove
useful in differentially private analysis of social networks.

c) Exponential Mechanism: The exponential mecha-
nism was proposed by McSherry and Talwar [27]. Blum et
al. [4] showed that the exponential mechanism could be used
to answer large classes of queries accurately provided that the
dimension of the dataset was reasonably small and that the
number of records in the dataset was large7.

We note that the mechanism from [4] was computationally
inefficient and it only works for datasets with reasonably low
dimension. Hardt et al. [16] found an alternative differentially
private algorithm that can provide accurate answers to many
queries given a very low dimensional dataset (e.g., there algo-
rithm runs in time proportional to |X |, where X denotes the
set of all possible data records). However, Ullman [36] showed
that, in general, it is computationally hard to answer O

(
n2+ε

)
adaptively chosen queries unless cryptographic traitor-tracing
schemes can be broken. Efficient implementations of the
exponential mechanism remain rare. We used dynamic pro-
gramming algorithm to provide an efficient implementation of
the exponential mechanism for integer partitions. Could similar
techniques be used to implement the exponential mechanism
in other settings?

d) Password Composition Policies: Many organizations
require their users to follow strict rules when selecting pass-
words (e.g., use a mix of upper/lower case letters, include
numbers and change the password frequently) [33]. Several
empirical studies have shown that these password composition
policies frustrate users and result in more forgotten pass-
words [24], [15] and may sometimes even cause users to select
weaker passwords [23], [3]. It is our hope that our differentially
private algorithm for releasing password frequency statistics
might lead to the collection and release of empirical data that
would improve our understanding of the security impact of
these policies.

e) Measuring Password Strength: Many metrics have
been proposed for measuring the resistance of a password
distribution to guessing. The most general are non-parametric,
that is, they don’t assume anything about the structure of the
password distribution and require knowledge of the probability

7More formally, given a class Q of counting queries, the exponential
mechanism could be used to release a small sanitized dataset, which would,
with high probability, provide accurate answers for every query q ∈ Q
provided that their are enough records in the dataset. To provide α-accurate
answers they needed a dataset of size n = Õ

(
log(|Q||X|)+log δ−1

α3ε

)
, where

V CDim (Q) ≤ log |Q| is the Vapnik-Chervonekis dimension of the query
classQ, X is the set of all possible data records and ε is the privacy parameter.

of each password independently.8 This allows measuring an
ideal attacker who is able to always guess the most likely
password which hasn’t already been tried. Importantly, non-
parametric models can always be computed from a password
frequency list alone and do not require analyzing the semantic
meaning or representation of passwords themselves.

In this model, guessing-entropy [34], [26]
n∑
i=1

i · pi

measures the average number of guesses needed to crack a
single password. While intuitive, Bonneau demonstrated that
this metric produces absurd results on real password datasets
due to the presence of extremely difficult-to-guess outliers [6].
Boztaş [7] proposed a metric called β-guesswork, which
measured the success rate for an adversary with β guesses
per account

∑β
i=1 pi. Pliam proposed a similar metric called

α-guesswork [30]. This metric measure how many guesses
the adversary would need to achieve success rate α. Min-
entropy H∞ = − log p1 measures the likelihood of the most
common password and represents a tool for analyzing worst-
case security [3].

Bonneau argued that no single metric is adequate as each
is inherently bound to a specific attacker model and that fair
comparison requires considering the entire guessing curve (i.e.
a plot of λ̃β for all values of β). The original published
analysis of the Yahoo! data included several guessing metrics
for different attacker models. In Section VI we re-computed
these metrics on the Yahoo! data using the perturbed frequency
lists produced by our algorithm, finding that our results were
very close. This may be construed as evidence that the original
statistics published by Bonneau [5] were granular enough to
already provide reasonable privacy guarantees to individuals.
For example, it is possible that many of these statistics
already satisfied the notion of of noiseless privacy which was
introduced by Bhaskar et al. [1].

VIII. CONCLUSIONS AND FUTURE WORK

We presented an efficient mechanism for releasing per-
turbed password frequency lists. Our algorithm guarantees
minimal distortion while satisfying a strong security notion
(approximate differential privacy). Our empirical evaluation
over the RockYou dataset demonstrated that our algorithm
is scalable and that it introduces low distortion in practice.
This appealing combination of security and utility convinced
Yahoo! to release the password frequency lists from a dataset
represnting 70 million users. Our evaluation on this data
further demonstrates the practicality of our approach. At a high
level, analysis of the perturbed data would have produced the
same scientific conclusions (with nearly identical computed
statistics) and as analysis on the raw data itself.

Thus, using our methods the data could have been publicly
released in perturbed form rather than shared on a limited basis
with a trusted researcher. As it were, this original collaboration

8By contrast, other metrics might assume the password distribution takes
a specific form, such as a Zipf distribution, and try to estimate parameters
from observed data. Other metrics might assume that pieces of passwords
representing numbers and letters are chosen independently and can therefore be
estimated independently. We ignore such parametric models in our discussion.
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only occurred because a student researcher with an interest in
password statistics happened to be taken on as an intern with
the Yahoo! authentication team. This experiment has never
been repeated at Yahoo! or elsewhere despite the possibility
of learning more about password selection by collecting such
data. Other password researchers are usually left to work with
whatever data is leaked publicly from hapless organizations
who suffer data breaches.

This situation is bad for scientific progress. We hope that,
given our differential privacy approach, other organizations
will follow Yahoo!’s lead and make new password datasets
publicly available to the research community.
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APPENDIX

Reminder of Theorem 1. [27] The exponential mechanism
Eε preserves ε-differential privacy.

Proof of Theorem 1. Suppose that f ∈ P and f ′ ∈ P are
neighboring integer partitions. For any x ∈ P we have

dist (f ′, x)− 1

2
≤ dist (f, x) ≤ dist (f ′, x) +

1

2
.

Therefore,

Pry←Eε(f) [x = y]

Pry←Eε(f ′) [x = y]
=

wf exp (−ε · dist (f, x))

wf ′ exp (−ε · dist (f ′, x))

≤ wf
wf ′

eε|dist(f,x)−dist(f ′,x)|

≤

(
max
f̃∈P

e−ε·dist(f,f̃)

eε·dist(f
′,f̃)

)
eε/2

≤ eε .

�

Reminder of Theorem 2. Let f ∈ P (N), ε > 48π2
√
N

and δ ≥
e1−
√
N/2 be given and let f̃ ← Eε (f) denote a random sample

from the exponential mechanism. Then except with probability
δ we will have

dist
(
f, f̃
)
≤
c1
√
N + c2 ln

(
1
δ

)
ε

,

where c1 = 2π
√

2
3 + o(1) and c2 = 2 + o(1) are constants.

We will use the following lemma to prove Theorem 2.

Lemma 4. |{f ′ ∈ P dist (f, f ′) = d/2}| ≤ 2 |P (N + d)|
for any f ∈ P (N)

Proof: Let Dd = {f ′ ∈ P dist (f, f ′) = d/2} be the
subset of all partitions f ′ at distance d/2 from f . We partition
Dd into two sets D+

d and D−d such that f ′ ∈ D+
d if and

only if f ′1 ≥ f . It suffices to show that there is a map µ :
Dd → P (N + d) such that µ is injective over both of the
domains D+

d and D−d . Given f ′ ∈ Dd let N ′ denote the integer
such that f ′ ∈ P (N ′). We set µ(f ′) = z where zi = f ′i for
i > 1 and z1 = f ′1 + N + d − N ′. If x, y ∈ D+

d and x 6= y
then there must be some index i > 1 for which xi 6= yi.
Suppose for contradiction that xi = yi for all i > 1 then
we must have x1 − f1 = |x1 − f1| = |y1 − f1| = y1 − f1

because dist (f, x) = d/2 = dist (f, y) and x1, y1 ≥ f1.
Thus, xi = yi for all i ≥ 1. Contradiction! Thus, µ(x) 6= µ(y)
because there exists i > 1 s.t µ(x)i = xi 6= yi = µ(y)i. A
similar argument shows that µ(x) 6= µ(y) whenever x 6= y
and x, y ∈ D−d .

The following fact will also be useful in our proof.

Fact 3. For all 0 ≤ x ≤ 0.7968 we have x ≥ 1− e−2x.

Proof: Consider the continuous function f(x) = 1 −
e−2x − x. It suffices to show that f(x) ≥ 0 over the range

[0, 0.7968] since 1 − e−2x = x + f(x) ≥ x. The derivative
f ′(x) = 2e−2x−1 has one positive zero at x = ln 2

2 ≈ 0.34657.
We have f ′(x) ≥ 0 for x ∈

[
0, ln 2

2

]
so f is increasing over

this range. Thus f(x) ≥ 0 over this range since f(0) = 0.
Similarly, f ′(x) ≤ 0 over the range x ∈

[
ln 2
2 ,∞

]
and thus

f(x) ≥ 0 over the range
[

ln 2
2 , 0.7968

]
because f(0.7968) ≥ 0.

Proof of Theorem 2. We rely on the following upper bound
on |P(N)| due to Pribitkin [10]

|P (N)| ≤ 1

N3/4
exp

(
π

√
2N

3

)
.

Given an input partition f ∈ P (N) we have

Pr
y←Eε(f)

[
y = f̃

]
= wf exp

(
−ε · dist

(
f, f̃
))

,

for some constant wf which denotes the probability that the ex-
ponential mechanism outputs f itself — because dist (f, f) =
0. Combining Pribitkin’s [10] bound with Lemma 4 we can
can upper bound the number of partitions f ′ ∈ P with
dist

(
f, f ′) = d/2. Thus, by the union bound the probability

that we output any f ′ with distance dist
(
f, f ′

)
= d/2 is at

most Pry←Eε(f)

[
dist

(
f, y
)

= d/2
]

≤ 2wf |P (N + d)| · exp (−ε · d/2)

≤

(
2wf

(N + d)
3/4

)
exp

(
−εd

2
+ π

√
2N + 2d

3

)
.
= γd .

Thus, it suffices to show that

∞∑
d=d0

γd
wf
≤ δ , where d0 =

2π

√(
2N
3 + 4

√
N
ε

)
+ 2 ln (t)

ε

and t will be selected later. Because d+N ≥ 8π2

3ε2 we have

γd+1

γd
=

(
N + d

N + d+ 1

)3/4
e−ε(d+1)/2+π

√
2N+2d+2

3

e−εd/2+π
√

2N+2d
3

= e−ε/2
(

N + d

N + d+ 1

)3/4 (
eπ
√

2
3 (
√
N+d+1−

√
N+d)

)
≤ e

−ε/2+
π
√

2/3
√
N+d+

√
N+d+1 ≤ e−ε/2+

π
√

2/3

2
√
N+d

≤ e−ε/2+ ε
4 = e−ε/4 .

Therefore, we have
∞∑
d=d0

γd ≤ γd0 +

∞∑
t=1

γd0

t∏
i=1

(
γd0+i+1

γd0+i

)

≤
∞∑
t=0

γd0

(
max
i≥1

{
γd0+i+1

γd0+i

})t
≤

∞∑
t=0

γd0e
−tε/4 ≤ γd0

1− eε/4
.
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Assuming for now that d0 ≤
√

6N
ε we get

γd0
wf

=

2 exp

(
−εd0

2 + π
√

2N+2d0
3

)
(N + d0)

3/4

=

2 exp

(
π
√

2
3

(√
N + d0 −

√
N + 6

√
N/ε

)
− ln t

)
(N + d0)

3/4

≤ 2

t (N + d0)
3/4

.

Thus, if we set t = 2

(N+d0)3/4(1−e−ε/4)δ
we have

∞∑
d=d0

γd
wf
≤ 2

t
(
1− eε/4

)
(N + d0)

3/4
≤ δ .

It remains to check that d0 ≤
√

6N
ε . Note that if t ≤ e

√
N/2

then we would be done since

d0 =

2π

√(
2N
3 + 4

√
N
ε

)
+ 2 ln (t)

ε

≤

√(
8π2N

3 + 16π2N
48π2

)
+ 2 ln (t)

ε

≤ 5.5
√
N + 2 ln (t)

ε
≤ 6N

ε
.

Because ε ≥ 48π2/
√
N we have

(
1− e−ε/4

)
≥(

1− e−12π2/
√
N
)

. By setting x = 6π2/
√
N in Fact 3 we

have
(

1− e−12π2/
√
N
)
≥ 6π2/

√
N ≥ 2

(
N + d0

)−3/4

whenever x < 0.7968. Thus, if x < 0.7968 we have t ≤(
N+d0

)−3/4

6π2/
√
N
·
(

2
δ

)
≤ 2

δ ≤ e
√
N/2. Similarly, when x > 0.7968

we have
(
1− e−ε/4

)
≥
(

1− e−12π2/
√
N
)

= 1 − e−2x ≥

1 − e−2·0.7968 ≥ 0.7968 so that t ≤ 2
(
N+d0

)−3/4

0.7968·δ ≤ 2.52
δ ≤

e
√
N/2.

�

Reminder of Theorem 3. For any δ-negligible set family
S the mechanism EεS preserves (ε, δ′)-differential privacy for
δ′ = δ + eεδ.

Proof of Theorem 3. Let f ∼ f ′ be neighboring partitions.
The statistical distance between the distributions Eε (f) and
EεS (f) is at most∑

f̃∈P

∣∣∣∣ Pr
y←Eε(f)

[
y = f̃

]
− Pr
EεS(f)

[
y = f̃

]∣∣∣∣ ≤ δ .
Similarly, the statistical distance between the distributions
Eε (f ′) and EεS (f ′) is at most δ. Thus, for any set S ⊆ P
we have

Pr
y←EεS(f)

[y ∈ S] ≤ Pr
y←Eε(f)

[y ∈ S] + δ

≤ eε · Pr
y←Eε(f ′)

[y ∈ S] + δ

≤ eε · Pr
y←EεS(f ′)

[y ∈ S] + eεδ + δ .

�

Reminder of Fact 2. The sum
∑
f̃∈P exp

(
−ε · dist

(
f, f̃
))

converges.

Proof of Fact 2. Observe that for any partition f̃ ∈
P (N + 2d) we must have dist

(
f, f̃
)
≥ d. Applying

Pribitkin’s [10] bound on |P (N)| we get∑
f̃∈P exp

(
−ε · dist

(
f, f̃
))

≤
∑
d∈Z

∑
f̃∈P(N+d)

exp
(
−ε · dist

(
f, f̃
))

≤
∑
d∈Z

∑
f̃∈P(N+d)

exp

(
−ε · d

2

)

≤
∑
d∈Z

exp

(
π

√
2N + 2d√

3
− ε · d

2

)
,

where it is clear that the last sum converges. �

Reminder of Lemma 2. For all (i, U) such that i ≤ N + d
and Li ≤ U ≤ Ui we have

wi,U,ε = exp

−ε |U − fi|
2

·min{U,Ui+1}∑
U ′=Li+1

wi+1,U ′,ε .

Proof of Lemma 2.

wi,U,ε =
∑
n≥0

∑
x∈P(n)\Sd

fi

x1=U

exp
(
−ε× dist

(
f i, x

))

=
∑
n≥0

U∑
U ′=0

∑
x∈P(n)\Sd

fi

x1=U,x2=U ′

exp
(
−ε× dist

(
f i, x

))

=
∑
n≥0

U∑
U ′=0

∑
x∈P(n)\Sd

fi

x1=U,x2=U ′

e−ε×dist(f
i+1,x2)−ε×|fi−U |/2

= e−ε|fi−U |/2
U∑

U ′=0

∑
n≥0

∑
x∈P(n)\Sd

fi

x1=U,x2=U ′

e−ε×dist(f
i+1,x2)

= e−ε|fi−U |/2
U∑

U ′=0

∑
n≥0

∑
x∈P(n)\Sd

fi+1

x1=U ′

e−ε×dist(f
i+1,x)

= e−ε|fi−U |/2
min{U,Ui+1}∑
U ′=Li+1

wi+1,U,ε .

�
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