
Studying the Privacy Issues of the
Incorrect Use of the Feature Policy

Beliz Kaleli
Boston University

bkaleli@bu.edu

Manuel Egele
Boston University
megele@bu.edu

Gianluca Stringhini
Boston University

gian@bu.edu

Abstract—In addition to rendering HTML and providing Web
access, Web browsers offer auxiliary features (e.g., camera, geolo-
cation, microphone etc.) that can be used while browsing. Some of
these features access sensitive information such as camera image,
microphone, and location data. The common behavior of modern
browsers when a website tries to access one of these features is
to prompt a permission dialog for the user to allow or deny
this request. The user’s response may be recorded by the Web
browser and remembered for that website. However, websites may
include third party resources in the form of HTML iframes.
Recently, the W3C introduced the Feature Policy to restrict which
origins contained in a website get access to which features. To
prevent the leakage of sensitive information, both Web developers
and browser developers have to handle feature usage carefully.
Web developers need to ensure that permissions are only given
to trustworthy websites and Web browser developers have to
implement the Feature Policy correctly. A wrong implementation
from either one of these parties could cause privacy leaks, such
as an untrusted iframe getting access to the user’s webcam.

In this paper, we present a study of nine Web browsers
and their behavior regarding feature usage in websites, and
show that five of them (Chromium based browsers) are open to
social engineering attacks that may lead to sensitive information
disclosure to untrusted parties. We identify the root causes of this
problem as two-fold: Web browsers prompting misleading dialogs
when asking for permissions and the wrong use of Feature Policy
by websites.

I. INTRODUCTION

As technology evolves, new requirements emerge for web-
sites and applications to serve users. While location based ser-
vices have long enjoyed popularity among mobile applications
(e.g., [1], [2], [3], [4]), commodity browsers started to support
similar APIs and hence allow users to take advantage of the
location based functionalities on their Web browser. Similarly,
since most social media apps/websites such as Facebook [5]
require camera and microphone access for some functionalities
(e.g., video-calling), browsers also added support for those
features.

To ensure the privacy of user-data, the W3C recently
proposed the so-called Feature Policy [6] HTTP response
header, which allows webmasters to precisely control which

parts of a website can access what features, pending user-
approval. The Feature Policy is analogous to the Same Origin
Policy [7], in the sense that the website developer and the
browser developer both need to work together to achieve the
desired protections.

In this paper, we show that the use of Web browser features
may lead to sensitive data leakage if not handled carefully.
Specifically, embedded iframes in a website can also request
a feature access through the main website. The sources of these
iframes may be untrusted third-parties. The responsibility
of the Web browser is to inform users of feature requests
and what it means to “allow/deny” those requests, whereas the
website developer should limit feature access to third parties
by using Feature Policy correctly. If the chosen Feature Policy
is overly-permissive, sensitive user data may also be accessed
by untrusted iframe origins.

Previous studies focused on the adoption of response head-
ers and their security and privacy implications [8], [9], [10],
[11], [12], [13]. In other work [14], [15], researchers proposed
sandboxing scripts as a countermeasure to data leakage. To the
best of our knowledge, we are the first to study the adoption
of the Feature Policy in the wild, and to look at the risks
arising from its incorrect implementation by Web browsers
and websites.

To study the extent of the problem, we developed three
test cases, applied them to 9 different Web browsers, and
observed their behavior. We find that 5 out of 9 Web browsers
(Chromium based browsers) are open to social engineering at-
tacks that can result in a third party to access sensitive informa-
tion from untrusted iframes without the user’s knowledge.
We also note that this partial-vulnerability is known by the
Chromium developers and was a design choice in response to
publicly unavailable surveys.

In summary, the contributions of this paper are as follows:

• We present potential security issues arising from an in-
correct deployment of the Feature Policy, and develop
three use cases that allow us to identify vulnerable
Web browsers and websites.

• We evaluate 9 Web browsers, finding that 5 of the
browsers (including Google Chrome) are open to
social engineering attacks which may lead to sensitive
data leakage.

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-63-0
https://dx.doi.org/10.14722/madweb.2020.23014
www.ndss-symposium.org



II. BACKGROUND

In this section, we provide the pertinent background infor-
mation that the remainder of the paper relies upon. First, we
introduce browser features and how permissions can be granted
to Web origins. Then, we present the recently proposed Feature
Policy, which regulates the feature usage by Web browsers.
Finally, we present our threat model of how a malicious
party could obtain sensitive information from a victim with
an example scenario.

A. Browser Features

Most modern Web browsers offer several features such
as geolocation, camera, and microphone, to enable
several functionalities on websites (e.g., video-calling, ge-
olocation). To use these features, websites ask the user for
permission to access every feature they need. When a website
tries to access a feature, the Web browser prompts a permission
dialog box to the user. The purpose of this dialog box is to
inform the user of the access request, and it typically contains
the name of the feature and the origin of the website that
requested it, together with “allow” and “block” options. The
browser may then record the response to that prompt, which
causes a permanent permission, or may alternatively not record
the user’s decision and prompt the permission request every
time.

Websites may have embedded iframes in them. These
iframes may also need to use browser features. In that case
the embedded iframes will contain a script in which they
ask the browser for permission to access one or more features.
Depending on the Feature Policy configuration, the main
website could prevent iframes from requesting permissions
for features, as discussed next.

B. Feature Policy

Website developers may want to control access to certain
browser features within their websites as a security or perfor-
mance precaution. The Feature Policy addresses this issue by
offering the ability to selectively enable/disable the access to
the browser features in its own frame, and in content within
any iframe elements in the document. The HTTP Feature
Policy header is used with a directive and an allowlist for
that directive. The directive is the feature to be restricted and
may take the values in Table I.

The allowlist can take different values. By specifying
the “none” keyword for the list, the specified features will be
disabled for all browsing contexts, regardless of their origin.
The “self” keyword will disable the use of the specified feature
within all browsing contexts except for the main website’s

“ambient-light-sensor” “autoplay” “accelerometer”
“camera” “display-capture” “document-domain”
“encrypted-media” “fullscreen” “geolocation”
“gyroscope” “magnetometer” “microphone”
“midi” “payment” “picture-in-picture”
“speaker” “sync-xhr” “usb”
“wake-lock” “webauthn” “vr / xr”

TABLE I: Possible Feature Policy Directives

Fig. 1: A Simple Attack Scenario: 1. Alice serves a website in
which Feature-Policy is set as a wildcard for camera feature,
2. Eve serves malicious advertisements, 3. Alice publishes
Eve’s ads on alice.com by embedding an iframe, 4.
Bob visits alice.com. Browser prompts a permission dialog
that contains misleading information which says feature re-
quest is coming from alice.com whereas it originates from
eve.com. Bob clicks “allow” on the dialog box, 5. Eve uses
the feature and steals sensitive data.

own origin. If a developer wants to enable the feature for
their own website or a third-party websites, they will specify
the URI of that website as the value of the allowlist. The
“self” keyword and specific URLs can be used together. The
wildcard option allows the feature to be accessed in the
document, and all nested browsing contexts regardless of their
origin. For example, the following configuration will allow the
camera feature to be used by both the main website and all
nested iframes while blocking the microphone usage in
all browsing contexts: “Feature-Policy: camera *;
microphone ’none’.” If the website contains iframes,
the wildcard configuration can be vulnerable since third-party
contexts will also be able to access the camera feature. As
a result, that third-party will have access to the user’s camera
and hence record her and steal sensitive data.

C. Threat Model

Browser features can be requested by both benign and mali-
cious websites. An educated user will only give permission for
using their browser features to trustworthy websites. However,
if the Feature Policy is not properly configured by the website
developer, these permission requests may be coming from
third-party embedded iframes. For example, advertisements
are an important constituent of the Web. Many websites publish
ads to generate revenue. One possible way to publish an ad
is to embed iframes into the main website. The content of
this iframe will be provided by the advertisement network
or the landing page for the advertisement [16].

Figure 1 provides an example attack scenario for the type
of vulnerability studied in this paper. First, Alice sets her
site’s Feature Policy as a wildcard for the camera browser
feature (Step 1). Eve serves malicious advertisements (Step
2) and Alice publishes Eve’s ads on alice.com (Step 3).
After that, Bob visits alice.com and clicks on “allow” to
access the feature when the browser prompts a dialog box
for permission (Step 4). Since alice.com set the Feature

2



Policy for camera as a wildcard, eve.com also has the
camera permission and Eve has access to Bob’s camera
(Step 5). Note that for our attack scenario to succeed three
conditions need to be met: the Feature Policy has to be set
to a wildcard, the malicious iframe has to be embedded
in the main website and user has to click on “allow” on the
dialog when prompted. To measure the possibility of our attack
scenario in the wild, we crawled the Majestic top 1 million
list and found the websites that use wildcard in their Feature
Policy. We explain our measurements in the wild in detail in
Section V.

III. METHODOLOGY

We study the privacy issues resulted from Feature Policy
misuse by following two phases:

1) Design the test cases that will cover possible iframe
inclusions to the main website.

2) Visit the main website with different Web browsers
to to examine browser behavior.

In the remainder of this section, we describe these two phases
in detail.

A. Design the Test Cases

In this paper, we aim to identify dangerous browser behav-
iors made possible by iframe inclusions to the main website
and by two different settings of the Feature Policy, namely, not
setting the Feature Policy at all and setting it to a wildcard. To
this end, we designed three test cases to be tested on each
Web browser. To perform our test cases, we created three
websites with different origins. The reason to use different
origins for all three websites is to demonstrate iframes as
embedded third-party contexts. From here on we will use the
terms mainsite, iframesite1, and iframesite2 for
the main website, the first iframe source, and the second
iframe source, respectively. Mainsite has two embedded
iframes in its HTML source code with the source set
as (iframesite1) and (iframesite2). Iframesite1
and iframesite2 have the exact same HTML source code
which tries to access and use the geolocation, camera
or microphone feature, depending on which feature we are
testing. However, the two iframes are hosted under different
origins to represent different third-parties. The three main test
cases are summarized as follows:

1) Test1: The feature is only used by iframesite1
and not by mainsite.

2) Test2: The feature is used by mainsite, a perma-
nent permission is granted by the browser, then the
same feature is used in an iframe of mainsite
with the source as iframesite1.

3) Test3: The feature is used in an iframe of
mainsite with the source set as iframesite1,
a permanent permission is granted by the browser
after mainsite is visited and “allow” is clicked
in the dialog box, then the feature is used in an-
other iframe of mainsite with the source set as
iframesite2.

Our main concern when designing the test cases was
to cover different types of iframe inclusions to the main

website. Specifically, in our first test case (Test1) we include
an iframe (iframesite1) to mainsite. In Test1, the
feature request originates from the iframe (iframesite1)
and not from mainsite. In the second test case (Test2), we
include the iframe (iframesite1) after the user approves
the feature request originating from mainsite itself. In
the third test case (Test3), we include a second iframe
(iframesite2) after the user approves the feature request
originating from the first iframe (iframesite1). This
way we aim to observe whether permissions given to different
origins contained in the same website (mainsite) affect each
other. To be more precise, as the user, we grant permission to
the feature requesting origin when browser prompts (whether
this request is originated from the mainsite itself or any
other included iframe). After granting the permission, we
try to see if the browser forwards this permission to another
iframe source’s origin that resides in the mainsite without
the user explicitly approving a request for that iframe
source’s origin.

We also want to observe the fidelity of the informa-
tion given in the dialog box prompted by the browser.
In Test1, since the feature is only used by the iframe
(iframesite1) and not by the mainsite, we expect to
see the origin of the iframe (iframesite1) inside the
permission dialog. In Test2, we expect to see the origin
of the mainsite in the first dialog and the origin of the
iframe (iframesite1) in the second dialog, after the
browser grants permanent permission to the main website.
Similarly in Test3, we expect to see the origin of the first
iframe (iframesite1) and later on the origin of the
second iframe (iframesite2) in the prompted dialog. In
each test case we also expect to see the name of the correct
feature inside the dialog box. We chose the three test cases to
cover a group of such scenarios mentioned above.

We apply the three test cases for three browser features
which are geolocation, camera and microphone. Fur-
thermore, we applied the three test cases both without setting
the Feature-Policy header in the main website and with setting
the header to wildcard for all three features. In total, we tested
each browser for 18 different conditions.

B. Visit Mainsite with Different Web Browsers

When a user visits a website from a Web browser, if any
feature is used in the home page of that website, the browser
prompts a permission dialog which asks the user to allow/deny
the website’s feature access requests. Since in our websites we
are using the feature on the home page, we were able to see
the prompt immediately after visiting the mainsite.

For each of the 18 conditions, we created a mainsite
under the same domain. These mainsite instances have
small differences such as the Feature Policy header setting,
the included iframes, the used features, to comply with the
test cases and conditions defined in Section III-A. We show
the differences between these mainsite instances in Table II.
As it can be seen, there are ten different mainsite instances,
however we created three groups of websites with same
mainsite configuration (from mainsite1-6a) for each
of the three features. Therefore, in total we created thirty
mainsite instances.

3



Feature Policy Embeds Feature request
originates from

Mainsite1 not set iframesite1 iframesite1
Mainsite2 not set - mainsite
Mainsite2a not set iframesite1 iframesite1
Mainsite3 not set iframesite1 iframesite1
Mainsite3a not set iframesite2 iframesite2
Mainsite4 wildcard iframesite1 iframesite1
Mainsite5 wildcard - mainsite
Mainsite5a wildcard iframesite1 iframesite1
Mainsite6 wildcard iframesite1 iframesite1
Mainsite6a wildcard iframesite2 iframesite2

TABLE II: Different Mainsite Configurations Used In Tests

For Test1, we visited the mainsite1 and waited for the
dialog to be prompted and if prompted we clicked “allow”
to observe whether the feature can actually be used by the
iframe. For our second test case we first visited mainsite2
and then when prompted we accepted the request on the
browser. For the browsers that offer an option to record this
choice and persist the permission we also selected that option.
In order to see whether the iframe can use the feature
without the user’s explicit approval, even though mainsite
does not use it anymore we visited mainsite2a where
feature request originates from iframesite1 and not from
mainsite. For the last test case, we visited mainsite3 and
then when prompted we accepted the request on the browser.
For the browsers that offer an option to record this choice
and persist the permission we also selected that option. After
that we visited mainsite3a which excludes iframesite1
and includes another iframe which is iframesite2 that
tries to access the feature inside the mainsite. To test the
wildcard configuration of Feature Policy, we followed the same
steps with mainsite4-6a.

While visiting mainsite for all test conditions, we
investigated the browser’s behavior. Specifically, we recorded
the text displayed inside the permission dialog and examined
to see if the information in the text is enough to give the
user an understanding about the permission to be granted
(contains the correct feature and correct origin where the
feature request originates). Browsers hold a list of allowed
websites for every feature. We also recorded the change in
those lists after we select options inside the prompts to give
permanent permissions.

IV. EVALUATION

We evaluated the approach discussed above on the follow-
ing 9 browsers: Chrome 77, Firefox 69, Chromium 71, Opera
64, Brave 0.55, Edge 42, Apple Safari 10.12, iOS Safari 10.11,
Android Chrome 77. A browser is considered vulnerable if for
any of our test cases it behaves in such a way that contributes
a malicious third-party website to steal sensitive data. After
analyzing our test results, we found that the following five
Chromium based browsers are open to social engineering
attacks based on our attack model: Chrome, Chromium, Opera,
Brave, and Android Chrome. According to StatCounter [17],
the market share of Chrome desktop browser is 70.71% and for
the Chrome mobile browser is 60.52%, which means that the
majority of Web users utilize partially-vulnerable browsers. For

other browsers we grouped the ones that behave the same way
together. In Table III, we present only the vulnerable part of
our results. We omit the results for the other browsers for space
reasons, since they did not present any vulnerability related to
the Feature Policy. In the following, we classify the browsers
according to their reactions to our test cases and we describe
the behavior that we encountered for each class of browsers
in detail.

A. Chromium Based Browsers

Chromium, Chrome, Opera, Brave, and Android Chrome
are found to be partially-vulnerable and acted the same way
against our tests since they are all Chromium based browsers.
During our experiments we observed that Chromium based
browsers always show the permission dialog displaying the
domain of the mainsite independent of the actual origin
trying to access the feature. When the Feature Policy is set
as wildcard for a feature, any iframe that is embedded
in the mainsite is able to use the feature even if the
permission is only granted to the mainsite. This is the
expected behavior. If the request is made from an iframe
and not the mainsite, then, prompting for the mainsite
may be misleading the user. For example, in Table III, it can
be seen that for Test1 where the feature is only used by the
iframesite1 and not by the mainsite Chromium based
browsers prompted a dialog with the name of the mainsite.
When the user clicks “allow” in this dialog, Chrome recorded
the origin of mainsite under permitted websites for that
feature. In this case mainsite can be a trustworthy website
and iframesite1 can be a malicious advertisement. The
user who trusts the mainsite is likely to click “allow” when
prompted with the misleading dialog. However, Chromium
developers consciously chose to grant permissions to the top-
level in response to several consumer surveys and user studies
which are not publicly available. The developers explained that
the reason behind this trade-off is to prevent confusing users,
because most of them are likely unaware of the composed
nature of websites [18]. However, we believe that this design
choice of Chromium-based browsers limits the information
given to user and thus, does not provide user with a full picture
to “allow/deny” the request.

B. Edge

Edge does not support the Feature Policy. However, it is
not vulnerable against our threat model because anytime an
iframe tries to access a browser feature, Edge prompts a
dialog that asks permission for the correct origin (i.e. the actual
origin that is requesting feature permission). On the other hand,
when a website developer uses the policy to limit feature access
from iframes, their measure will be rendered useless for this
browser. Website developers would think that they restricted
feature access from iframes where in fact, feature access
permission will depend on the user’s decision after the browser
prompts a dialog box. If we relate this case to the previous
example in Section IV-A, Edge will ask for permission for
iframesite1, which is the malicious advertisement domain
and the user will have a choice to click “allow” or “block”
in the permission dialog seeing the origin of the malicious
website in the dialog.

4



Feature Policy not set Feature Policy set to *

Used in
iframesite1

Granted in
mainsite,

used in
iframesite1

Granted in
iframesite1,

used in
iframesite2

Used in
iframesite1

Granted in
mainsite,

used in
iframesite1

Granted in
iframesite1,

used in
iframesite2

Chromium Based
Browsers

Location
Camera
Microphone

Contains Mainsite origin in
prompt? No Yes No Yes Yes Yes

Mainsite allowed to use
feature? No Yes No Yes Yes Yes

Contains Iframe1 origin in
prompt? No No No No No No

Iframe1 allowed to use
feature? No No No Yes Yes Yes

Contains Iframe2 origin in
prompt? N/A N/A No N/A N/A No

Iframe2 allowed to use
feature? N/A N/A No N/A N/A Yes

TABLE III: Behavior of Chromium-based Web Browsers, specifically, Chrome, Chromium, Opera, Brave, Android Chrome. We
omit the other browsers for space reasons, since they did not present the vulnerability under study.

C. Firefox

By default Firefox does not recognize the Feature Policy.
Therefore, Firefox behaved the same for the two configurations
of Feature Policy (setting the Feature Policy to wildcard and
without setting it at all). Firefox also does not persist granted
permissions if the website does not have an SSL certificate.
For this reason, we tested Firefox with both HTTP and HTTPS
websites since Test2 and Test3 required to record permissions.
For the default configuration of Firefox, we observed the
same behavior already discussed for Edge. Firefox does not
recognize the Feature Policy by default, but this can be en-
abled by changing the browser’s configuration. After enabling
the related configuration parameters we applied our tests to
Firefox. We did not observe any difference in our test results
for the geolocation feature, as Firefox did not recognize
geolocation directive of the Feature Policy header. For the
camera and microphone features, on the other hand, when
the Feature Policy is not set, we recorded that Firefox did not
prompt permission dialogs for iframes and did not let them
use the features. This is the exact behavior we would expect
if Feature Policy was set to “none” for both camera and
microphone. We repeated our test cases setting the Feature
Policy to wildcards. Firefox prompted dialogs with the correct
information (i.e. the correct feature and the actual origin that
requests the permission) which is the expected behavior.

D. Safari

Apple Safari and iOS Safari are collected under one
category since they behaved the same. As it can be seen
from Table III, the behavior under both configurations of
the Feature Policy that we tested is the same, because these
browsers do not support wildcards in the Feature Policy [19].
Similar to Firefox with the Feature Policy support enabled, we
noticed that Safari treats the geolocation feature different
than camera and microphone. Safari prompted dialogs for
iframesites for geolocation but not for camera and
microphone. The reason is that Safari does not support
geolocation in the Feature Policy but it supports the
camera and microphone features.

V. MEASUREMENT IN THE WILD

In the previous section, we demonstrated that five Web
browsers are potentially open to an attack involving the access
of browser featured from untrusted third parties. We then

aim to understand whether the necessary conditions for the
identified attack scenario are present in the wild. To this
end, we first identify which websites use wildcards for their
Feature Policy, then we check the iframes embedded to
those websites. While doing so, we try to understand whether
ad networks would allow an advertiser to upload arbitrary
code, since one way to publish an advertisement in a website
is to use iframes. If we could upload our malicious code
to an advertisement network and get our ad published in a
website which uses a wildcard, then our attack scenario would
succeed. To this end, we followed the four steps explained
below.

1) We crawled first 100K of the Majestic top 1 mil-
lion websites [20] and recorded their Feature-Policy
header. After that, we extracted the websites that
have at least one feature set as a wildcard. The
results of this crawl are depicted as option usage
for each feature in Appendix A. From the figure,
we can see that for the three features that we fo-
cused on this paper, geolocation, camera, and
microphone, wildcard usages are 4.44%, 1.9% and
1.9% respectively.

2) We visited each of the extracted websites in an
automated environment by using Selenium [21] and a
modified version of the Live HTTP Headers Chrome
extension [22]. This modified extension recorded
HTTP traffic between remote Web servers and that
browser instance and labeled every request to iden-
tify the ones that originated from an iframe. We
parsed the resulting file containing the labeled HTTP
traffic to analyze the requests that are made to get
iframes.

3) Among the iframe sources found in 2, we recorded
the ones that point to an advertisement network.
We identified advertisement networks by checking
EasyList, Alexa and builtwith.com [23], [24],
[25]. The most popular ad networks were Facebook,
Google and Yahoo ad networks. An attacker can
execute custom code as an advertiser that requests
access for a feature and send the user-data to their
servers to steal sensitive data. However, these ad
networks do not allow custom JavaScript code to
be uploaded but instead they offer several templates
and expect users to upload images or enter text. We
created accounts and tried to upload our proof of

5



concept code as an advertiser on other ad networks
(popcash.net, infolinks.com etc.) and observed that
these ad networks also do not allow custom code from
advertisers.

4) As previously mentioned in Section II-C, our attack
scenario could be successful in the wild if an attacker
is in control of an iframe source embedded in any
extracted website (extracted websites are mentioned
in 1). To this end, an attacker could register a non-
existing or expired domain (i.e., a NXDOMAIN) that
is currently used by extracted websites as an iframe
source, serve their malicious code, and wait for users
to click “allow” when prompted. To find out if this at-
tack could be performed on the extracted websites, we
visited each of the extracted websites and collected
the DNS traffic with Wireshark [26], then filtered the
output to only have NXDOMAINs. After that, we
cross-referenced the NXDOMAINs with the output
of the modified extension to find whether the requests
to NXDOMAINs originated from iframes. Finally,
we observed that most of the NXDOMAIN requests
are made from scripts that are in HTML source code
of extracted websites and not in iframe sources.
Consequently, we could not demonstrate our attack
scenario on real-world websites.

VI. COUNTERMEASURES

To prevent the unwanted usage of browser features that may
cause sensitive data leaks, both website developers and browser
developers can take measures. From the website developer’s
perspective the most basic approach would be setting the
Feature Policy to only allow same-origin accesses which will
prevent third-parties to access the features. Another approach
could be setting the allow attribute for iframes. However,
the Feature Policy header makes configuration easier in the
sense that allow attribute has to be applied to each iframe
individually whereas setting the Feature Policy header auto-
matically defines the rules for the whole website. Thus, it
prevents human error such as missing some iframes in
the webpage. It should be noted that even just missing one
single iframe here would be enough for our attack model
to succeed. Moreover, by using the Feature Policy header a
developer can only allow the features that the website needs
to function and set others as “none” to prevent possible leaks.
For example, if a website only needs location data to function,
setting Feature Policy header for geolocation as “self”
which is equal to allowing only same-origin and setting others
as “none” would be the most secure approach assuming this
policy is handled correctly by the browser.

From a browser developer’s perspective, on the other
hand, not persisting permissions for third-party websites could
be a good solution against the possible problem caused by
attackers re-registering NXDOMAINS which are already used
as sources of iframes in several websites. Also in this paper
we discovered that some of the browsers display prompts with
misleading information. The prompts displayed by browsers
should be accurate to make users understand what they are
permitting when they click “allow”.

VII. DISCUSSION

In this section, we first discuss the limitations of our study.
We then talk about possible directions for future work.

A. Limitations

We did not test older versions of browsers that may still be
used by some users and they possibly do not have support for
the Feature Policy since it is fairly new and a work in progress.
However, most modern browsers have an auto-update setup by
default so the majority of users likely run a recent version of
a given browser. For example, as of September 2019 9.89% of
users use Chrome 77, 25.26% use Chrome 76 whereas only
2.38% use Chrome 75 [27].

We only crawled the homepages of the top 100K Majestic
websites. Therefore, we did not investigate whether there are
iframes on subpages that are potentially vulnerable or not.

We did not investigate some of the advertisement networks
for several reasons such as some of them required payment to
register or we were able to submit a registration request but it
is not verified.

B. Future Work

In this paper, we showed that the Feature Policy is not yet
fully understood or adopted by Website and browser develop-
ers, and that this opens the possibility for misconfigurations
and bugs that lead to privacy leaks. While we performed a
measurement of the top 100k websites according to majestic,
however, we could not find evidence of malicious parties taking
advantage of this attack in the wild. As part of future work,
we plan to perform more extensive measurements, looking not
only at the home pages of websites but also at subpages, to
better understand whether sensitive browser features are being
accessed by untrusted parties.

VIII. RELATED WORK

Related work studied vulnerabilities in Web browsers that
can be exploited by using iframes [28], [29]. Another
research found that because of the browser failing to ask
permission, websites were able to read the battery status
and profile users accordingly [30]. Previous studies [8], [9],
[10] focused on adoption of response headers in general or
in particular such as Content Security Policy [11], [12] and
Referrer Policy [13]. Studies showed that unless these policies
are used correctly both by server-side and client-side, they do
not protect against possible attacks. Other research investigated
script inclusion to steal sensitive data [14], [15] and proposed
sandboxing scripts as a countermeasure. [31] showed that
third-party scripts included in websites may cause sensitive
data leakage.

IX. CONCLUSION

In this paper, we analyzed 9 Web browsers and their
behavior against different configurations of Feature Policy and
iframe inclusions. We created 3 websites and in total 18 test
cases for each browser. The attack scenario we present in this
paper is possible for every browser. However, we found that
Chromium based browsers presents misleading information

6



which will in turn make the user more open to our attack
scenario. We also showed that adoption of Feature Policy has
not been completed by most of the browsers since we observed
inconsistent behavior (e.g., not supporting geolocation
feature while supporting camera and microphone features)
and no support at all (Edge).

REFERENCES

[1] “Uber - earn money by driving or get a ride now.” [Online]. Available:
https://www.uber.com/

[2] “Become a driver or get a ride now.” [Online]. Available:
https://www.lyft.com/

[3] [Online]. Available: https://maps.google.com/
[4] “The largest selection of hotels, homes, and vacation rentals.” [Online].

Available: https://www.booking.com/
[5] [Online]. Available: https://www.facebook.com/
[6] Aug 2019. [Online]. Available: https://w3c.github.io/webappsec-feature-

policy/
[7] “Same origin policy.” [Online]. Available:

https://www.w3.org/Security/wiki/Same Origin Policy
[8] T. V. Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen,

“Large-scale security analysis of the web: Challenges and findings,”
Trust and Trustworthy Computing Lecture Notes in Computer Science,
2014.

[9] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis, “Time does
not heal all wounds: A longitudinal analysis of security-mechanism sup-
port in mobile browsers,” Proceedings 2019 Network and Distributed
System Security Symposium, 2019.

[10] S. Arshad, S. A. Mirheidari, T. Lauinger, B. Crispo, E. Kirda, and
W. Robertson, “Large-scale analysis of style injection by relative path
overwrite,” Proceedings of the 2018 World Wide Web Conference on
World Wide Web - WWW 18, 2018.

[11] M. Ying and S. Q. Li, “Csp adoption: current status and future
prospects,” Security and Communication Networks, vol. 9, no. 17, 2016.

[12] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is csp failing?
trends and challenges in csp adoption,” Research in Attacks, Intrusions
and Defenses Lecture Notes in Computer Science, 2014.

[13] B. Kaleli, M. Egele, and G. Stringhini, “On the perils of leaking
referrers in online collaboration services,” Detection of Intrusions and
Malware, and Vulnerability Assessment Lecture Notes in Computer
Science, 2019.

[14] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens, “Jsand,” Proceedings of the 28th Annual Computer Security
Applications Conference on - ACSAC 12, 2012.

[15] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include,”
Proceedings of the 2012 ACM conference on Computer and communi-
cations security - CCS 12, 2012.

[16] B. Stone-Gross, R. Stevens, A. Zarras, R. Kemmerer, C. Kruegel, and
G. Vigna, “Understanding fraudulent activities in online ad exchanges,”
in Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, 2011.

[17] “Browser market share worldwide.” [Online]. Available:
https://gs.statcounter.com/browser-market-share/

[18] “Permission delegation.” [Online]. Available:
https://docs.google.com/document/d/
1x5QejvpyQ71LPWhMLsaM1lWCfSsBsSQ8Dap9kJ6uLv0/edit#

[19] “Can i use... support tables for html5, css3, etc.” [Online]. Available:
https://caniuse.com/#feat=feature-policy

[20] [Online]. Available: https://majestic.com/reports/majestic-million
[21] “selenium-webdriver.” [Online]. Available:

https://www.npmjs.com/package/selenium-webdriver
[22] “We will help you get started!” [Online]. Available:

https://www.esolutions.se/
[23] “Easylist.” [Online]. Available: https://easylist.to/
[24] “The top 500 sites on the web.” [Online]. Available:

https://www.alexa.com/topsites/category/Top/Business/
Marketing and Advertising

[25] “Advertising usage distribution in the top 1 million sites.” [Online].
Available: https://trends.builtwith.com/ads

[26] [Online]. Available: https://www.wireshark.org/
[27] “Web browser market share.” [Online]. Available:

https://www.w3counter.com/globalstats.php
[28] B. Stone-Gross, M. Cova, C. Kruegel, and G. Vigna, “Peering through

the iframe,” 2011 Proceedings IEEE INFOCOM, 2011.
[29] J. Yun, Y. Shin, H. Kim, and H. Yoon, “Miguard : Detecting and guard-

ing against malicious iframe through api hooking,” IEICE Electronics
Express, vol. 8, no. 7, 2011.

[30] L. Olejnik, G. Acar, C. Castelluccia, and C. Diaz, “The leaking battery,”
Lecture Notes in Computer Science Data Privacy Management, and
Security Assurance, 2016.

[31] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include,”
Proceedings of the 2012 ACM conference on Computer and communi-
cations security - CCS 12, 2012.

7



APPENDIX

A. Feature Policy Option Usage

Fig. 2: Feature Policy Option Usage for Features in Majestic top 100K.

8


