
Towards Precise Reporting of
Cryptographic Misuses

Yikang Chen, Yibo Liu1, Ka Lok Wu (The Chinese University of Hong Kong), Duc
V Le2 (University of Bern); Sze Yiu Chau (The Chinese University of Hong Kong)

1Now at Arizona State University
2Now at Visa Research

Presented by

Cryptographic APIs

App Developers

Cryptographic APIs

Encryption

Message digests (hashes)

Digital signatures

Certificate validation

Key generation and management

Secure random number generation

Secure Socket Layer (SSL/TLS)

...

Need

App Developers

Cryptographic APIs

Encryption

Message digests (hashes)

Digital signatures

Certificate validation

Key generation and management

Secure random number generation

Secure Socket Layer (SSL/TLS)

...

Need Call APIs

Java Cryptography Architecture (JCA)

C libraries, e.g. OpenSSL crypto library
(libcrypto)

App Developers

Cryptographic API misuses

Java Cryptography Architecture (JCA)

C libraries, e.g. OpenSSL crypto library
(libcrypto)

Cryptographic API misuses

Java Cryptography Architecture (JCA)

C libraries, e.g. OpenSSL crypto library
(libcrypto)

be misused due to

Weak cipher?
Hardcoded key, IVs or salts?
Collision-prone hashing?
Legacy SSL versions?
Broken certificate validation?
Non-CSPRNGS?
…

Cryptographic API misuse detectors

• Previous works on statically detecting potential cryptographic misuses
• MalloDroid: SSL/TLS usage in Android applications [CCS ’12]
• CryptoLint: Cryptographic misuse detection in Android applications [CCS ’13]
• CryptoREX: Cryptographic misuse detection in IoT Devices [RAID ’19]
• CogniCryptSAST with CrySL: using domain specific languages to validate crypto

misuse in Java and Android applications [TSE ’19]
• CryptoGuard: High-precision detection in Java and Android applications[CCS ’19]

Misuse AlarmsStatic DetectorsApplications

Cryptographic API misuse detectors

• Previous works on statically detecting potential cryptographic misuses
• MalloDroid: SSL/TLS usage in Android applications [CCS ’12]
• CryptoLint: Cryptographic misuse detection in Android applications [CCS ’13]
• CryptoREX: Cryptographic misuse detection in IoT Devices [RAID ’19]
• CogniCryptSAST with CrySL: using domain specific languages to validate crypto

misuse in Java and Android applications [TSE ’19]
• CryptoGuard: High-precision detection in Java and Android applications[CCS ’19]

Misuse AlarmsStatic DetectorsApplications

Open-source State-
of-the-art detectors
for IoT and Android
apps

Motivation

• Status quo
• The benchmarks shows high precision.
• The empirical results shows plentiful violations in real-world applications at the

scale of thousands.

Motivation

• Status quo
• The benchmarks shows high precision.
• The empirical results shows plentiful violations in real-world applications at the

scale of thousands.

• Motivation
• If bug detectors report too many false alarms, developers will refuse to use them.

[Why don’t software developers use static analysis tools to find bugs?, ICSE13]

• Are the violations actual cryptographic misuses or false alarms?

Methodology

• We collected a dataset for evaluation
• For CryptoGuard and CogniCryptSAST:

• Collected 3489 apks from an open-source Android applications repository
• For CryptoRex:

• Collected 1177 firmware images from same vendors according to its paper

Methodology

• We collected a dataset for evaluation
• For CryptoGuard and CogniCryptSAST:

• Collected 3489 apks from an open-source Android applications repository
• For CryptoRex:

• Collected 1177 firmware images from same vendors according to its paper

• We manually analyzed the alarms using the following procedures
• Merge alarms based on reported misuses’ method signature.
• Sort the merged alarms by their occurrence in apps.
• Analyze root cause of top-10 offending methods.
• Sample additional alarms by choice.

Overview of results

• There is a gap between misuse alarms and actual vulnerabilities that can
be fixed by developers.
• We consider 2 types of false alarms: False positives (FPs) and Ineffectual

True Positives (ITPs).
• We conclude 19 false alarm patterns from 4 types of root causes.

Real-world Programs

True
positive

FPs from
implementation of
static analysis

ITPs from:
- imprecise modeling of rules
- valid usage contexts
- standard mandates

Approximation

FP: non-existent data flows

• Broken def-use chains due to variable reassignment in CryptoGuard

FP: non-existent data flows

FP: non-existent data flows

Use set: {$r5}

FP: non-existent data flows

Use set: {$r5, $r2}

FP: non-existent data flows

Use set: {$r5, $r2, r0.pwd}

FP: non-existent data flows

Use set: {$r5, $r2, r0.pwd, "jks"}

However, the method KeyStore.getDefaultType() returns
a constant String "jks", considered as constant password

Safe refinement of def-use chains

Refined results

• We implemented the refinement and rerun it on the same data set.

FP: incorrect detection of hardcoded arrays

• A bug in detection of hard-coded arrays in CogniCryptSAST

byte[] r0;
r0 = newarray (byte)[256];

Jimple IR

FP: incorrect detection of hardcoded arrays

• A bug in detection of hard-coded arrays in CogniCryptSAST

byte[] r0;
r0 = newarray (byte)[256];

Jimple IR

• Idiosyncrasies of the IR need to be carefully considered.

• Detectors need thorough testing and evaluation based on real-world
datasets with sufficient sample size.

ITP: Overly broad blacklists

• Reasonable iteration counts considered insecure in CogniCryptSAST
§ Requires the PBE iteration count: 10000 > 1000 (minimum requirement of the time)

ITP: Overly broad blacklists

• Reasonable iteration counts considered insecure in CogniCryptSAST
§ Requires the PBE iteration count: 10000 > 1000 (minimum requirement of the time)

• Reasonable key sizes considered insecure in CryptoGuard
§ Requires EC key size to be 512 bit long ≈ RSA 15360 >> RSA 2048
§ ITP Examples:
• A 256-bit key for ED25519
• A 384-bit key for ECDSA-384
• Android 6-13 (API 23- 33): default key size EC 256, RSA 2048

ITP: Overly broad blacklists

• Reasonable iteration counts considered insecure in CogniCryptSAST
§ Requires the PBE iteration count: 10000 > 1000 (minimum requirement of the time)

• Reasonable key sizes considered insecure in CryptoGuard
§ Requires EC key size to be 512 bit long ≈ RSA 15360 >> RSA 2048
§ ITP Examples:
• A 256-bit key for ED25519
• A 384-bit key for ECDSA-384
• Android 6-13 (API 23- 33): default key size EC 256, RSA 2048

• Constant seeds assumed to always make outputs of SecureRandom
predictable in CryptoGuard
• Android 7+ (API 24+): a given seed is always used as a supplement to randomness
• Older versions depend on choices of providers

ITP: Overly narrow whitelists

• Narrow whitelist constraints in detecting MITM in CryptoGuard
• Requires session to influence return value of verify method via def-use relations

ITP: Overly narrow whitelists

• Narrow whitelist constraints in detecting MITM in CryptoGuard
• Requires session to influence return value of verify method via def-use relations

Influence return value through control
flows (if-else) without def-use relations

ITP: Overly narrow whitelists

• IVs must come from SecureRandom in CogniCryptSAST
• ITP example: decryption mode

• Key materials to construct SecretKeySpec must come from existing
SecretKey or Key objects in CogniCryptSAST
• ITP examples:

• Loading the bytes from key files, network
• Generating a byte array with SecureRandom

ITP: Overly narrow whitelists

• IVs must come from SecureRandom in CogniCryptSAST
• ITP example: decryption mode

• Key materials to construct SecretKeySpec must come from existing
SecretKey or Key objects in CogniCryptSAST
• ITP examples:

• Loading the bytes from key files, network
• Generating a byte array with SecureRandom

• Justify the adopted lower bounds by clearly citing the standards or
recommendations of the time.

• Blacklists modeling requires to capture sufficient conditions of a misuse.
Labels of confidence (sufficient v.s. necessary conditions) can be helpful.

• Whitelists modeling is hard as it requires the understanding of common
legitimate patterns. Mining and testing code repositories can be helpful.

ITP: misuse rules v.s. usage contexts

• All usage of AES-ECB considered insecure
• ITP example: AES-ECB can be used as the raw AES block cipher for implementing

other secure modes of operation, e.g., AES-EAX mode in Google’s Tink library

ITP: misuse rules v.s. usage contexts

• All usage of non-CSPRNGs considered insecure
• non-CSPRNG can be used in other security-insensitive scenarios,
e.g., UI animation on Android

ITP: misuse rules v.s. usage contexts

• All usage of collision-prone hash functions considered insecure
• ITP examples: MD5 can be utilized for hashing files as an index for local cache

lookup or for logging purposes, e.g. Facebook’s SoLoader library

ITP: misuse rules v.s. usage contexts

• All usage of collision-prone hash functions considered insecure
• ITP examples: MD5 can be utilized for hashing files as an index for local cache

lookup or for logging purposes, e.g. Facebook’s SoLoader library

• ITPs come from legitimate usage context where they provide sufficient
guarantees and desirable performance.

• We recommend detectors target specific usages that are vulnerable
under a well-defined threat model.

Generalizability of false alarm patterns

• We evaluate our found patterns on
FindSecBugs.
• An open-source industrial tool for finding

security bugs in Java and Android
applications based on SpotBugs.

Generalizability of false alarm patterns

• We evaluate our found patterns on
FindSecBugs.
• An open-source industrial tool for finding

security bugs in Java and Android
applications based on SpotBugs.

• 5 patterns also apply, but avoid requiring
IV from SecureRandom in decryption
mode.

Takeaway

• Cryptographic misuse static detectors exhibit many unnecessary false
alarms in our real-world evaluation.

Takeaway

• Cryptographic misuse static detectors exhibit many unnecessary false
alarms in our real-world evaluation.

• The false alarm patterns come from the imprecision in static analysis,
coarse modeling of cryptographic misuses and overlooking usage context.

Takeaway

• Cryptographic misuse static detectors exhibit many unnecessary false
alarms in our real-world evaluation.

• The false alarm patterns come from the imprecision in static analysis,
coarse modeling of cryptographic misuses and overlooking usage context.

• For future works:

• Tighten the decision boundary of static analysis.

• Thoroughly scrutinize real-world results on top-N offending methods.

• Use real-world patterns can help refine their approximations.
• For measuring the security of apps, detectors must be used with care.

Thank You!

https://github.com/kynehc/crypto-detector-evaluation-artifacts
Our artifact is available:

ykchen@ie.cuhk.edu.hk
y1kang.com

Questions?

Backup Slides Next

Cryptographic API misuses

• An example of hardcoded password and salt.

Detect Cryptographic API misuses

• Detect cryptographic API misuses via static analysis

e.g., Backward data flow
analysis

Rules for Cryptographic API misuse

• CryptoLint, CryptoREX:

Rules for Cryptographic API misuse

• CryptoGuard:

Rules for Cryptographic API misuse

• CogniCryptSAST with CrySL

Overview of results

• 19 false alarm patterns from 4
types of root causes

However, it wrongly assign “newarray
(byte)[256]” to arrayLocal instead of r0.

extractSootArray.keySet.size() is 0 ≠≠ 1
isHardCodedArray() returns True.

FP: incorrect detection of hardcoded arrays

FP: incorrect handling of call-return edges
• A FP example of incorrect handling of call-return edges of CFG in CryptoREX

4096 is captured by its backward slicing
without considering the call-return edge
from sub_464F0()

