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Routing Attacks

BGP lacks authentication. BGP sessions are often authenticated against
MitM (using TLS, IPSec,...) but BGP is still vulnerable to rogue AS attacks:

• Route Leak: to AS 3
• Prefix Hijack: X=(1.2/16, 666)
• Subprefix Hijack: to AS 12
• Origin Hijack: X=(1.2/16, 666-11)
• Path Manipulation:
X=(1.2/16, 666-2-11)

• Attribute Manipulation:
add blackhole attribute
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A Brief History of BGP Security (not to scale)
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A Brief History of BGP Security (not to scale)
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Post-ROV Routing Attacks

BGP lacks authentication. BGP sessions are often authenticated against
MitM (using TLS, IPSec,...) but BGP is still vulnerable to rogue AS attacks:

• Route Leak: to AS 3
• Prefix Hijack: X=(1.2/16, 666)
• Subprefix Hijack: to AS 12
• Origin Hijack: X=(1.2/16, 666-11)
• Path Manipulation:
X=(1.2/16, 666-2-11)

• Attribute Manipulation:
add blackhole attribute
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BGPsec (RFC8205): IETF standard against path manipulations.
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• BGPsec ASes downgrade to BGP for BGP neighbors
• E.g, AS 5 will not receive signature, can’t validate.

• ⇒ Very limited benefits for partial deployment [LychevGS13]
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BGPsec (RFC8205): IETF standard against path manipulations.
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• Why BGPsec downgrades to BGP?

• BGPsec ASes do not relay BGPsec info to BGP-only routers.
• Even if they did, a rogue AS could just drop the BGPsec info

• BGPsec has no registry of adopting ASes
• And adopting ASes may stop signing at any time
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Areas to Improve on BGPsec

1. Security benefits are limited to islands (only BGPsec ASes in path).
2. Downgrade to (non-authenticated) BGP is trivial for on-path attackers.
3. No defense against route leaks.
4. Only the AS Path is protected; other path attributes can be manipulated.

Signature operations in BGPsec are also computationally expensive, in this
work we only focus on items 1-4.
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Contribution: BGP-iSec

BGP-iSec aims to improve on the security of BGPsec in partial adoption with
few modifications to the existing design. The modifications:

• Identify adopters and their PK, prevent unauthorized downgrades to
BGP.

• Enable partial path verification.
• Authenticate integrity-protected attributes.
• Prevent route leaks.
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Evaluating1 the Components of BGP-iSec

1Simulations were performed using custom extensions to BGPy
https://github.com/jfuruness/bgpy_pkg
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Evaluation: Attacker Strategies

• Aggressive: 1-hop origin hijack. Ex: AS Path = {666, 1}

• Shortest-Path Export-All: Attacker shortens the AS Path as much as
possible while avoiding detection by any deployed path manipulation
defenses. Ex: AS Path = {666, …, 2, 1}
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Evaluation: Attacker Models

• Global Attacker: Receives all BGP announcements sent by every AS, but
does not receive BGP-iSec attributes.
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Evaluation: Assumptions

• Post-ROV: ROA for prefixes, ROV by all ASes

• Valley-free Routing (with export-to-all)

• Relationships (topology) from CAIDA [serial 2]

• Identified Adopters and Public Keys (e.g. in RPKI)
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BGP-iSec Components

• Path integrity defense: transitive signatures

• Three route-leak defenses
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Transitive Signatures (1/2)

• BGP-iSec sets the transitive bit to true and sends
signatures to non-adopting neighbors.

• Transitive signatures allow BGP-iSec to enforce
downgrade prevention and authenticate adopting
(sub)paths.
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Transitive Signatures (2/2)

• BGP-iSec prevents fake downgrades:
signatures are relayed by all ASes; RPKI
identifies adopters, keys

• Overhead - but high security impact!
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Signed Only-To-Customer (OTC) (1/2)

• RFC-9234 defines the OTC attribute to indicate when
routes should only be propagated downward (to
customers).

• The OTC attribute is unauthenticated, so it only
protects against accidental route leaks. A malicious
attacker can simply remove the attribute.

• OTC prevents unintentional leaks; it is increasingly
adopted.

• BGP-iSec authenticates the OTC attribute, preventing
also malicious route leaks.
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Signed Only-To-Customer (OTC) (2/2)

• By simply authenticating OTC, a
standardized route leak protection
measure, the impact of post-ROV routing
attacks significantly reduces.

• OTC attributes are already in use today.

• BGP-iSec has two other defenses which
improve prevention of intentional leaks:
the UP attributes and the ProConID
mechanism
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BGP-iSec UP (Up Permitted) Attributes (1/2)

• The two Up-Permitted (UP) attributes, UPPre and
UPImg, indicate whether an announcement can be
sent to providers (upward).

• UPPre contains a random string x; UPImg contains
h(x), where h is a crypto-hash function

• The UP Preimage is removed when an announcement
is sent to a customer or peer (downward).

• Since the hash function cannot be reversed, the
preimage cannot be re-added.
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BGP-iSec Up Permitted (UP) Attributes (2/2)

• Drawback: an eavesdropping adversary
can capture the preimage.
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BGP-iSec ProConID (1/2)

• The ProConID mechanism protects against
route leaks even when the attacker can
eavesdrop on BGP session traffic.

• Similar to ASPAa, an adopting AS publishes a
list of the nearest BGP-iSec ASes to it in its
provider cone.

• AS 2 and 4 are the only BGP-iSec ASes that
will accept signed announcements from AS 1
from a customer interface because they are
the ASes in AS 1’s ProConID-list.

adraft-ietf-sidrops-aspa-verification-16
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5 4

AS 1 ProConID-list: {2, 4}
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BGP-iSec ProConID (2/2)

• ProConID provides even stronger
protection against route leaks than UP
attributes.

• Provider cones are small on average
(median size is around 30).

• The overhead of updating and
maintaining the ProConID-list is
reasonably low. We analyze it in the paper
but omit the results here.
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Overhead Comparison with BGPsec

• Both BGPsec and BGP-iSec require the
same number of signature verification
operations in full deployment.

• More signatures on average are verified in
partial adoption because they transit over
non-adopting ASes.
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Security Analysis

We also analytically show that under the assumptions of our evaluation, even
with stronger attacker models, the following properties hold.

• No false positives

• Prevention of [visible] route leaks

• Announcement integrity under full deployment
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Conclusions

• We present BGP-iSec, a set of modifications and extensions to BGPsec
to provide:

• Better security against ROV-valid path manipulations in partial deployment

• Defense against route leaks

• Defense against attribute manipulations

• BGP-iSec is not meant as a complete proposal, but as a basis to build
upon for further designs.
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Backup
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Overhead of ProConID

• ProConID requires confirming the set of
ASes in one’s provider cone.

• Initial overhead shows the average
number of providers verified when an AS
first adopts ProConID.

• Maintenance overhead reflects additional
providers they need to verify are in their
provider cone as adoption increases.
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Dropped Transitive Attributes?

• Almost all (98-99% of) BGP routers
forward transitive attributes they do not
recognize, but this behavior is a
“SHOULD” requirement in the RFC.

• A dropped transitive signature is
indistinguishable from a downgrade
attack.

• An AS should ensure its neighbors do not
drop unrecognized transitive attributes
before enforcing transitive signatures.
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Unknown Adopters?

• So far, we assumed BGP-iSec adopters
and their public keys would be known to
other adopters, via the RPKI or some
other mechanism.

• The overall impact of even a large number
of unknown adopters is small.
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