Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic Sign Perception

<u>Takami Sato</u>^{*1}, <u>Sri Hrushikesh Varma Bhupathiraju</u>^{*2}, Michael Clifford³, Takeshi Sugawara⁴, Qi Alfred Chen¹, and Sara Rampazzi²

* denotes co-first authors.

Infrared (IR) laser is not visible to humans

To human eye 🍅 (normal camera with IR filter)

Infrared (IR) laser is not visible to humans

To human eye 🍅 (normal camera with IR filter)

Infrared (IR) laser is not visible to humans

To human eye 🍅 (normal camera with IR filter)

Can Infrared Laser Reflection (ILR) be a new attack vector?

Autonomous Vehicle Cameras without IR filters

ICSL (I Can See the Light) Attack [Wang et al., CCS'21]

- IR light is detected as red light

We also confirmed that a commodity car with AV does not have IR filter.

Limitations of Existing Attacks: Visibility for Human

ICSL (I Can See the Light) Attack [Wang et al., CCS'21]

Patch Attacks

[Eykholt et al., 2018]

[Chen et al., 2019]

[Zhao et al., 2019]

Limitations of Existing Attacks: Visibility for Human

ICSL (I Can See the Light) Attack [Wang et al., CCS'21] Invisible AV's Vision **IR** light Attacker Autonomous Vehicle

Limitation ①

- Need accurate aiming at driving target
- Not designed for attacking traffic sign

Patch Attacks

[Eykholt et al., 2018]

[Chen et al., 2019]

[Zhao et al., 2019]

Our Attack Vector: Infrared Laser Reflection (ILR)

Our Attack Vector: Infrared Laser Reflection (ILR)

Our Attack Vector: Infrared Laser Reflection (ILR)

Attack Demo: Indoor Experiment

Attack Demo: Indoor Experiment

Attack Demo: Indoor Experiment

Attack Demo: Outdoor Experiment

Attack Demo: Outdoor Experiment

Research Challenges

Physical attack capability understanding & modeling

- Complicated physical process behind the speckle pattern
 - Pattern is generated from multiple, randomly phased, coherent waves
- Non-trivial to effectively interpolate unseen ILR attack trace
 - Naive averaging cancels out the speckle pattern

<u>Automatic generation of effective attacks on traffic sign</u> recognition model side

- Attack effectiveness highly depends on the position, size, and intensity of the speckled pattern
- Need to be robust to different distances and view angles

Naive trace modeling does not work

Ground Truth

Prediction: **Yield**

Alpha Blending

Prediction: Speed Limit (70 km/h)

Attack Modeling

Ray Tracing

Prediction: Stop Sign

Naive trace modeling does not work

Ground Truth

Prediction: Yield

Alpha Blending

Unrealistic

<u>Attack Modeling</u>

Ray Tracing

Prediction: Stop Sign

Overview of Attack Generation Pipeline

Our attack generation consists of 3 steps

Overview of Attack Generation Pipeline

Image Difference-based IR Trace Modeling

Simple but no need to simulate complex speckle patterns

Image Difference-based IR Trace Modeling

Simple but no need to simulate complex speckle patterns

Trace Image Interpolation How to simulate *non-collected* traces?

- Impossible to collect them physically
- Naive averaging dismisses the pattern

Trace Image Interpolation How to simulate *non-collected* traces?

- Impossible to collect them physically
- Naive averaging dismisses the pattern

Pixel-wise Spline Interpolation

- Apply cubic spline for each pixel

Trace Image Interpolation How to simulate *non-collected* traces?

- Impossible to collect them physically
- Naive averaging dismisses the pattern

Pixel-wise Spline Interpolation

- Apply cubic spline for each pixel

DNN-based Interpolation

- Apply FILM [Reda et al., 2022] model

Overview of Attack Generation Pipeline

Optimization-based ILR Attack Generation

Black-box attack optimization

- Optimize attack trace w.r.t
 - size
 - power
 - position
- Use a bayesian optimization, Tree-Structured Parzen Estimator

Optimization-based ILR Attack Generation

Black-box attack optimization

- Optimize attack trace w.r.t
 - size
 - power
 - position
- Use a bayesian optimization, Tree-Structured Parzen Estimator

Robustness improvement with Expectation over Transformation

- Resizing
- Brightness
- Gaussian Noise
- Rotation
- Shearing etc.

Overview of Attack Generation Pipeline

Attack Evaluation

* All attacks in this paper are physically deployed and evaluated

Evaluation Criteria

- Effectiveness
- Generality
- Robustness
- Transferability

Evaluation Scenarios

- Indoor
- Outdoor
 - Different lighting conditions
- Dynamic

Attack Factor Effectiveness

Target Traffic Sign Classification Models: GTSRB, ARTS, LISA

Evaluation Factors:

- Lighting Conditions
- Victim Cameras
- Laser Modules
- Laser Orientations
- Camera Position

TOP	(a) GTSF	RB Mode	a			STO	(b) AR	TS Mode	ł	
0%	100%	100%	100%	0%	0.5 m	0%	100%	100%	100%	100%
0%	70%	100%	100%	0%	1.0 m	0%	100%	100%	100%	100%
N/A	100%	100%	100%	100%	1.5 m 🖻	N/A	0%	0%	0%	0%
2 m	3 m	4 m ongitudina	5 m	6 m		2 m	3 m	4 m ongitudina	5 m	6 m
EED (C)	LISA Mo	del				SPEED	(d) ARTS	6 Model		
.5						25				
100%	100%	100%	100%	100%	0.5 m _	25 100%	100%	100%	100%	100%
100% 100%	100% 100%	100% 100%	100% 100%	100% 100%	0.5 m 1.0 m at	25 100% 0%	100% 100%	100% 100%	100% 100%	100% 100%
100% 100% N/A	100% 100% 100%	100% 100% 100%	100% 100% 100%	100% 100% 100%	0.5 m 1.0 m ^{Lateral} 1.5 m	25 100% 0% N/A	100% 100% 0%	100% 100% 0%	100% 100% 40%	100% 100% 100%

- Attack success rates reach 100%, when camera is 3-5 m away from traffic sign
- Attack is more successful on speed limits due to contrast with laser speckles

Attack on Object Detectors

- Attack success rates are 100% at 6 m away from the target
 YOLOv3 (single-stage object detector) shows higher robustness
- Attack is more robust on Speed Limit.

Target Sign	Detection Model	4 m	5 m	6 m	7 m
Store	Faster R-CNN (ARTS)	100%	100%	100%	100%
Stop	YOLOv3 (COCO)	0%	0%	100%	0%
Sign	YOLOv5 (COCO)	10%	90%	100%	100%
Caral	Faster R-CNN (ARTS)	100%	100%	100%	100%
Speed	Faster R-CNN (Mapillary)	100%	100%	100%	100%
Limit	YOLOv5 (ARTS)	100%	100%	100%	100%

Maximum Attacker Distance

- Attack deployed from 25 meters with low power (26 mW).
- Long range attack due to laser properties
- Longer attack distances deform speckle, require sophisticated optics

Outdoor Attack Evaluation

		Stop S	Sign		Speed Limit				
	ARTS		GTSRB		ARTS		LISA		
Speed	ASR	SCR	ASR	SCR	ASR	SCR	ASR	SCR	
	52		Night	Scena	ario				
5 km/h	100%	100%	99%	90%	100%	0%	99%	31%	
8 km/h	100%	100%	92%	91%	100%	0%	100%	0%	
13 km/h	100%	100%	85%	85%	100%	0%	99%	16%	
1			Day	Scena	rio				
5 km/h	98%	82%	85%	57%	100%	18%	100%	98%	
8 km/h	100%	88%	88%	46%	100%	50%	100%	87%	
13 km/h	91%	75%	80%	40%	100%	58%	100%	98%	

Outdoor Attack Evaluation

Ο

			Speed Limit					
	ARTS		GTSRB		ARTS		LISA	
Speed	ASR	SCR	ASR	SCR	ASR	SCR	ASR	SCR
	54. 		Night	Scena	ario			
5 km/h	100%	100%	99%	90%	100%	0%	99%	31%
8 km/h	100%	100%	92%	91%	100%	0%	100%	0%
13 km/h	100%	100%	85%	85%	100%	0%	99%	16%
10			Day	Scena	rio			
5 km/h	98%	82%	85%	57%	100%	18%	100%	98%
8 km/h	100%	88%	88%	46%	100%	50%	100%	87%
13 km/h	91%	75%	80%	40%	100%	58%	100%	98%

High attack success rates for 2 models trained on popular datasets

 \rightarrow Night time (120 lux) : \geq 85% attack success rate

○ $\stackrel{\scriptstyle{}_{\scriptstyle{\scriptstyle{\oplus}}}}{=}$ Day time (982 lux) : ≥80% attack success rate

Limitation of State-of-Art Certifiable Defense

- PatchCleanser [Xiang et al., 2022] does not handle ILR attack well
 - Assume prediction holds without adversarial trace
 - Their intuition doesn't hold, i.e., small part making can change label
- PatchCleanser's key idea, 2-round masking, can cause false agreements
- Mis-certifies ≥33.5% of cases of ILR attack traces

Proposed Defenses

Color-Frequency Detection: Physics-based characteristics of laser light reflections

Speckle Color Range based on ambient illumination

- #CF9FFF and #DA70D6 (Low illumination)
- #FFB266 to #CC6600 (High illumination)

Range

Frequency

Evaluated on 300 images during daytime and nighttime scenarios

ILT attack trace

- 98% True Positive Rate and 2.7% False Positive Rate during daytime conditions
- 92% True Positive Rate and 6.7% False Positive Rate during nighttime conditions

Conclusion

Discovered ILR, a long-distance and human-invisible attack vector, that can cause misclassification by traffic sign recognition systems.

- Design a novel methodology to optimize attack
 - Image difference-based IR trace modeling
 - Trace image interpolation
 - Robust attack generation with black-box optimization
- Measure the characteristics of ILR with a wide variety of parameters
- Perform evaluation in both indoor and outdoor day/night setups
 - 100% attack success rate indoor setup
 - **280.5%** attack success rate in outdoor driving setup up to 13 Km/h at day and night
- Demonstrate the limitations in the current state-of-the-art defense
- Design a new defense leveraging characteristics of ILR

Thank you!

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic Sign Perception

Takami Sato, Sri Hrushikesh Varma Bhupathiraju, Michael Clifford, Takeshi Sugawara, Qi Alfred Chen, and Sara Rampazzi

takamis@uci.edu and bhupathirajus@ufl.edu

Scan to visit our project website