

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita, Haya Schulmann, Niklas Vogel, Michael Waidner

ATHENE Research Center for Applied Cybersecurity Goethe University Frankfurt Technical University Darmstadt Fraunhofer SIT

A Short Introduction to RPKI

<u>RPKI stores Routing Information and makes it available to Routers</u></u>

A Short Introduction to RPKI

<u>RPKI stores Routing Information and makes it available to Routers</u></u>

Relying Parties – A trusted component

<u>RPs are trusted by routers to do all checks and validations</u>

Why fuzzing RPs is hard

- Fuzzers mutate objects
 - Mutation breaks signatures
- Fuzzers tests one input at a time
 - > RPKI Validation involves multiple inputs
- Fuzzers usually work on raw data
 - > RPKI Objects are complex and interdependent

=> <u>Fuzzing most RPKI functionality is not possible</u> with traditional fuzzers like AFL++ or LibFuzz

Introducing CURE for RP fuzzing

- Combining fuzzing features with RPKI functionality
- Generate mutated objects, feed them to RPs, look for crashes and inconsistencies (like a fuzzer)
- Sign objects, construct valid RPKI repository around an object (like an RPKI software)
- CURE can create valid RPKI repositories faster than RPs can process them!

Inner Workings of CURE

CURE can feed arbitrary objects efficiently to the RPs

Inner Workings of CURE

CURE can feed arbitrary objects efficiently to the RPs

Object Generation in CURE

1. Random Byte Mutation

- i. feed the randomizer a set of valid objects
- ii. splice file and generate random mutations
- iii. targets programming, parsing & schematic errors

2. Structure Aware Mutation

- i. schema-abiding and correctly encoded objects
- ii. manipulate content of fields to non-conforming types
- iii. targets processing and validation logic

CURE supports multiple Object Generation schemes

Results

Vulnerability Overview

• 18 severe vulnerabilities, 5 CVEs, 7 RFC Inconsistencies

Path Traversal/	DoS from	DoS from	DoS from	VRP
Cache Poisoning	Object Parsing	Processing	RTR packet	Inconsistencies
Routinator	Routinator OctoRPKI	Routinator OctoRPKI	Fort	Routinator OctoRPKI Fort RPKI-Client

Vulnerability: Path Traversal/Cache Poisoning

- RPs use object names as storage locations
- Path traversal allows an attacker to place arbitrary files anywhere on the disc of Routinator instances
- Can be exploited e.g. to add malicious trust anchor
 - > fully circumvent RPKI validation
 - poison the router VRP cache
- 57.9% affected by Path Traversal
- 32.7% affected by Cache Poisoning (status: December 2023)

Vulnerability: DoS

- Crashing the RP eventually leads to routers downgrading RPKI protection
- We found crashes in multiple modules:
 - Parsing of ASN.1 Data
 - Processing of Object Fields
 - Processing of RTR Requests
- Could be exploited by any RPKI repo against ALL active RP instances
- 56% of instances affected by DoS (status: December 2023)

RFC Inconsistencies

- RP implementations exhibit differences in object processing:
 - » RFC non-conforming validation and parsing
 - > Undefined non-essential corner cases with critical outcomes
- Related standards: RFC6482, RFC6487, RFC8182, RFC8897, RFC9286
- Example 1: acceptance of non-conforming CRLs with missing fields
 (risk: certificate integrity)
- Example 2: no concurrency checks for session_id during RRDP

 (risk: replay attack)

Cache Disparity

Snapshot parsing failure due to object sizes

RP	ROA / MFT	CRL	CERT	ASPA	GBR
Routinator	20MB	100MB	5MB	20MB	48MB
Octorpki	1.9GB	700MB	5MB	1.9GB	1.9GB
Fort	7MB	10MB	5MB	10MB	10MB
rpki-client	4MB	4MB	5MB	5MB	5MB

TABLE IV: Single file size to crash snapshot.xml parsing.

- Publication Point DoS
- Silent downgrade of VRP coverage
- MFT object size threshold

Inconsistent Validation on the Internet

- Processing inconsistencies are observable in real-world RPKI objects
 - > We analyze the RPKI objects with CURE
 - Disclaimer: CURE limitations allow the detection of only a subset of inconsistencies
- Example 1: 6405 Amazon prefixes not processed by Fort due to the presence of OrganisationName instead of SubjectName in certificates
- Example 2: OctoRPKI discards 1744 prefixes for having max length
 - > /24 for v4 and > /48 for v6

	Fort.log
ERR [Validation]: rsync://my.server.com/data/
exam The 's	plei.roa: subject' name has an unknown attribute. (NID: 17)

Conclusion

Conclusions and Observations

- RP inconsistencies lead to silent downgrade of RPKI protection
- Availability of fuzzing frameworks is essential
 - we offer the Comprehensively Usable RP Evaluator (CURE)
- ✓ CURE detected 18 severe vulnerabilities and 7 RFC Inconsistencies
- RPKI deployment is increasing fast, software maturity must outpace it
- Resilience and standardization should be emphasized in RPKI software

Thank you for your attention!

For any questions, you can contact us at <u>donika.mirdita@sit.fraunhofer.de</u> <u>n.vogel@em.uni-frankfurt.de</u>

