
Private Aggregate Queries to
Untrusted Databases

Syed Mahbub Hafiz*, Chitrabhanu Gupta*, Warren Wnuck,
Brijesh Vora, and Chen-Nee Chuah

University of California, Davis

Aggregate Information Retrieval with Privacy

● Motivation: Data provider can observe
all queries run on their database by
any user, the computations taking
place on the server, and which
database rows are scanned

● Goal: Retrieve information from an
untrusted database without revealing
specific queries, even in the presence
of t colluding database servers

SELECT COUNT(user_id)
FROM patients
WHERE is_smoker = ‘yes’
AND cancer_flag = 1

User

Medical
Database Query

Aggregate Information Retrieval with Privacy

● Motivation: Data provider can observe
all queries run on their database by
any user, the computations taking
place on the server, and which
database rows are scanned

● Goal: Retrieve information from an
untrusted database without revealing
specific queries, even in the presence
of t colluding database servers

SELECT SUM(num_likes)
FROM tweets
WHERE user_id = ‘20124’
AND date ≤ getdate()

User

Social
Media

Database

Query

Aggregate Information Retrieval with Privacy

● Motivation: Data provider can observe
all queries run on their database by
any user, the computations taking
place on the server, and which
database rows are scanned

● Goal: Retrieve information from an
untrusted database without revealing
specific queries, even in the presence
of t colluding database servers

SELECT SUM(price)
FROM flights
WHERE flight_id in
(‘1120’, ‘4268’)

User

Flights
Database

Query

Vector Matrix Model

● Database modeled as an r x s matrix
where r corresponds to the number of data
blocks (or rows) [Goldberg, 2007]

● To fetch the block of data, r-dimensional
query vector encoded with a 1 in the i-th
position and 0s at every other index

● Product of this query vector with the
database matrix produces the desired
block of data

● However, this procedure is not private and
so we use linear secret sharing

0 0 1 0

d
11

d
21

d
31

d
12

d
22

d
32

d
13

d
23

d
33

d
14

d
24

d
34

d
15

d
25

d
35

d
41

d
51

d
42

d
52

d
43

d
53

d
44

d
54

d
45

d
55

Query
Vector

Database Matrix

1

d
21

+d
41

d
23

+d
43

d
24

+d
44

d
25

+d
45

d
22

+d
42

Result Vector

ǁ

Making VMM Private for Information Retrieval

● User shares query vector component-wise
across servers, share vectors are multiplied
with copies of database matrix hosted in
each server, and user receives independent
products from each server

● User performs component-wise
reconstruction using responses received
from the servers to obtain desired block of
data

Query

D

Making VMM Private for Information Retrieval

● User shares query vector component-wise
across servers, share vectors are multiplied
with copies of database matrix hosted in
each server, and user receives independent
products from each server

● User performs component-wise
reconstruction using responses received
from the servers to obtain desired block of
data

Secret Share i

D
i

●
●
●

D
1

D
j

●
●
●

Secret Share 1

Secret Share j

Proposed PIR: Indexes of Aggregate Queries

● Data structure that maps
the database into another
matrix, designed to serve
specific queries

● Each column
corresponds to a row in
the database, each row
corresponds to a unique
value of an attribute in
the database

● Multiple indexes of
queries can be batched
together if dimensions
same [Hafiz-Henry, 2017]

Hospitalization_ID Patient_ID Admit_Date Gender_ID Days_Hospitalized State_ID
1 1 01-02-2022 1 (Male) 10 2 (OR)
2 2 01-04-2022 1 (Male) 2 1 (CA)
3 3 08-06-2022 2 (Female) 14 3 (WA)
4 1 07-23-2022 1 (Male) 2 2 (OR)
5 3 09-01-2022 2 (Female) 7 3 (WA)
6 4 05-14-2022 3 (Other) 2 1 (CA)

D =

ℿ
patient

 ≔

patient 1

patient 2

patient 3

patient 4

1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 1

Sample Query

Hospitalization_ID Patient_ID Admit_Date Gender_ID Days_Hospitalized State_ID
1 1 01-02-2022 1 (Male) 10 2 (OR)
2 2 01-04-2022 1 (Male) 2 1 (CA)
3 3 08-06-2022 2 (Female) 14 3 (WA)
4 1 07-23-2022 1 (Male) 2 2 (OR)
5 3 09-01-2022 2 (Female) 7 3 (WA)
6 4 05-14-2022 3 (Other) 2 1 (CA)

D =

SELECT SUM(Days_Hospitalized)
From D
WHERE Patient_ID = 1

0 0 01

Query Vector

ℿ
patient

 ≔

patient 1

patient 2

patient 3

patient 4

1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 1

Protocol Schematic

Protocol Schematic

Protocol Schematic

Case Studies

X (Formerly Twitter)

● Scraped 1,004,129 tweets with politically
relevant hashtags such as ‘USElections’,
‘Trump’, ‘Biden’

● 2 indexes of queries batched to serve queries
about like counts and retweet counts, each
index of query of dimension 333,286 ×
1,004,129

● Each row in the index of queries corresponds
to a unique user in the scraped database

MIMIC 3

● Clinical dataset of hospitalization records

● First set batches 4 indexes of queries to serve
4 different queries, each index of query matrix
is of dimension 4 x 58,976, with each row
corresponding to a different value of
admission type

● Second set batches 2 indexes of queries to
serve 2 queries, each index of query is of
dimension 1,400 × 4,156,450, with each row
corresponding to a different patient

Case Studies

X (Formerly Twitter)

SELECT SUM(like_count) FROM
twitter_data WHERE user_id =
‘100012’

SELECT COUNT(*) FROM twitter_data
WHERE user_id = ‘100012’ AND
no_retweets = 0

MIMIC 3

SELECT SUM(hospitalization_duration)
FROM admissions WHERE subject_id =
‘100012’ AND admission_type =
‘EMERGENCY’

SELECT COUNT(*) FROM admissions
WHERE admission_type = ‘URGENT’

Case Study Results

Case Study
Database

Index of
Aggregate
Queries for

Index Matrix
Dimension

Index
Generation
Time (secs)

Batching Time
for Multiple

Indexes (mins)

Additional
Data

Structure
Storage Size

(MiB)

VSpM
Throughput

on GPU
(clients/sec)

Server Response Generation
Time (secs)

All
Attributes

Essential
Attributes Baseline

MIMIC 3

Admission Type

4 x 58,976

0.06

0.002 0.76 20,534.12 0.11 0.04 0.11
Ethnicity 0.39
Latest Admission 0.98
Oldest Admission 0.95
Dosage

1,400 x 4,156,450
2.12

0.101 34.34 4,412.80 0.26 0.10 7.37
Stay Duration 2.03

Case Study Results

Case Study
Database

Index of
Aggregate
Queries for

Index Matrix
Dimension

Index
Generation
Time (secs)

Batching Time
for Multiple

Indexes (mins)

Additional
Data

Structure
Storage Size

(MiB)

VSpM
Throughput

on GPU
(clients/sec)

Server Response Generation
Time (secs)

All
Attributes

Essential
Attributes Baseline

MIMIC 3

Admission Type

4 x 58,976

0.06

0.002 0.76 20,534.12 0.11 0.04 0.11
Ethnicity 0.39
Latest Admission 0.98
Oldest Admission 0.95
Dosage

1,400 x 4,156,450
2.12

0.101 34.34 4,412.80 0.26 0.10 7.37
Stay Duration 2.03

Case Study Results

Case Study
Database

Index of
Aggregate
Queries for

Index Matrix
Dimension

Index
Generation
Time (secs)

Batching Time
for Multiple

Indexes (mins)

Additional
Data

Structure
Storage Size

(MiB)

VSpM
Throughput

on GPU
(clients/sec)

Server Response Generation
Time (secs)

All
Attributes

Essential
Attributes Baseline

MIMIC 3

Admission Type

4 x 58,976

0.06

0.002 0.76 20,534.12 0.11 0.04 0.11
Ethnicity 0.39
Latest Admission 0.98
Oldest Admission 0.95
Dosage

1,400 x 4,156,450
2.12

0.101 34.34 4,412.80 0.26 0.10 7.37
Stay Duration 2.03

Case Study Results

Case Study
Database

Index of
Aggregate
Queries for

Index Matrix
Dimension

Index
Generation
Time (secs)

Batching Time
for Multiple

Indexes (mins)

Additional
Data

Structure
Storage Size

(MiB)

VSpM
Throughput

on GPU
(clients/sec)

Server Response Generation
Time (secs)

All
Attributes

Essential
Attributes Baseline

MIMIC 3

Admission Type

4 x 58,976

0.06

0.002 0.76 20,534.12 0.11 0.04 0.11
Ethnicity 0.39
Latest Admission 0.98
Oldest Admission 0.95
Dosage

1,400 x 4,156,450
2.12

0.101 34.34 4,412.80 0.26 0.10 7.37
Stay Duration 2.03

Server Response Generation on Larger Databases

Response times for all modulus bit sizes are in seconds

Server Response Generation on Larger Databases

Response times for all modulus bit sizes are in seconds

Takeaways

● Novel framework that augments conventional IT-PIR protocols (e.g.,
Goldberg’s IT-PIR) with aggregate queries
○ Constructions of effective indexes of aggregate queries comprising new

standard aggregate vector

● Simulated real-world applications to benchmark performance and scalability
of proposed PIR scheme with aggregate queries

● Efficient implementation of our framework on GPU can achieve fast query
response time while assuring the privacy of aggregate queries

Thank You

