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Aggregate Information Retrieval with Privacy

● Motivation: Data provider can observe 
all queries run on their database by 
any user, the computations taking 
place on the server, and which 
database rows are scanned

● Goal: Retrieve information from an 
untrusted database without revealing 
specific queries, even in the presence 
of t colluding database servers

SELECT COUNT(user_id) 
FROM patients
WHERE is_smoker = ‘yes’
AND cancer_flag = 1
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FROM tweets
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Aggregate Information Retrieval with Privacy

● Motivation: Data provider can observe 
all queries run on their database by 
any user, the computations taking 
place on the server, and which 
database rows are scanned

● Goal: Retrieve information from an 
untrusted database without revealing 
specific queries, even in the presence 
of t colluding database servers

SELECT SUM(price) 
FROM flights
WHERE flight_id in 
(‘1120’, ‘4268’)
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Vector Matrix Model 

● Database modeled as an r x s matrix 
where r corresponds to the number of data 
blocks (or rows) [Goldberg, 2007]

● To fetch the block of data, r-dimensional 
query vector encoded with a 1 in the i-th 
position and 0s at every other index

● Product of this query vector with the 
database matrix produces the desired 
block of data

● However, this procedure is not private and 
so we use linear secret sharing
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Making VMM Private for Information Retrieval

● User shares query vector component-wise 
across servers, share vectors are multiplied 
with copies of database matrix hosted in 
each server, and user receives independent 
products from each server

● User performs component-wise 
reconstruction using responses received 
from the servers to obtain desired block of 
data

Query
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Proposed PIR: Indexes of Aggregate Queries

● Data structure that maps 
the database into another 
matrix, designed to serve 
specific queries

● Each column 
corresponds to a row in 
the database, each row 
corresponds to a unique 
value of an attribute in 
the database

● Multiple indexes of 
queries can be batched 
together if dimensions 
same [Hafiz-Henry, 2017]

Hospitalization_ID Patient_ID Admit_Date Gender_ID Days_Hospitalized State_ID
1 1 01-02-2022 1 (Male) 10 2 (OR)
2 2 01-04-2022 1 (Male) 2 1 (CA)
3 3 08-06-2022 2 (Female) 14 3 (WA)
4 1 07-23-2022 1 (Male) 2 2 (OR)
5 3 09-01-2022 2 (Female) 7 3 (WA)
6 4 05-14-2022 3 (Other) 2 1 (CA)

D = 
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patient

  ≔

patient 1

patient 2

patient 3

patient 4

1 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 1



Sample Query

Hospitalization_ID Patient_ID Admit_Date Gender_ID Days_Hospitalized State_ID
1 1 01-02-2022 1 (Male) 10 2 (OR)
2 2 01-04-2022 1 (Male) 2 1 (CA)
3 3 08-06-2022 2 (Female) 14 3 (WA)
4 1 07-23-2022 1 (Male) 2 2 (OR)
5 3 09-01-2022 2 (Female) 7 3 (WA)
6 4 05-14-2022 3 (Other) 2 1 (CA)

D = 

SELECT SUM(Days_Hospitalized) 
From D 
WHERE Patient_ID = 1
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Protocol Schematic
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Case Studies

X (Formerly Twitter)

● Scraped 1,004,129 tweets with politically 
relevant hashtags such as ‘USElections’, 
‘Trump’, ‘Biden’

● 2 indexes of queries batched to serve queries 
about like counts and retweet counts, each 
index of query of dimension 333,286 × 
1,004,129

● Each row in the index of queries corresponds 
to a unique user in the scraped database

MIMIC 3

● Clinical dataset of hospitalization records

● First set batches 4 indexes of queries to serve 
4 different queries, each index of query matrix 
is of dimension 4 x 58,976, with each row 
corresponding to a different value of 
admission type

● Second set batches 2 indexes of queries to 
serve 2 queries, each index of query is of 
dimension 1,400 × 4,156,450, with each row 
corresponding to a different patient 



Case Studies

X (Formerly Twitter)

SELECT SUM(like_count) FROM 
twitter_data WHERE user_id = 
‘100012’

SELECT COUNT(*) FROM twitter_data 
WHERE user_id = ‘100012’ AND 
no_retweets = 0

MIMIC 3

SELECT SUM(hospitalization_duration) 
FROM admissions WHERE subject_id = 
‘100012’ AND admission_type = 
‘EMERGENCY’

SELECT COUNT(*) FROM admissions 
WHERE admission_type = ‘URGENT’



Case Study Results

Case Study 
Database
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Generation 
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on GPU 
(clients/sec)
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All 
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Attributes Baseline

MIMIC 3

Admission Type

4 x 58,976

0.06

0.002 0.76 20,534.12 0.11 0.04 0.11
Ethnicity 0.39
Latest Admission 0.98
Oldest Admission 0.95
Dosage

1,400 x 4,156,450
2.12

0.101 34.34 4,412.80 0.26 0.10 7.37
Stay Duration 2.03
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Server Response Generation on Larger Databases

Response times for all modulus bit sizes are in seconds



Server Response Generation on Larger Databases
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Takeaways

● Novel framework that augments conventional IT-PIR protocols (e.g., 
Goldberg’s IT-PIR) with aggregate queries
○ Constructions of effective indexes of aggregate queries comprising new 

standard aggregate vector

● Simulated real-world applications to benchmark performance and scalability 
of proposed PIR scheme with aggregate queries

● Efficient implementation of our framework on GPU can achieve fast query 
response time while assuring the privacy of aggregate queries
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