From Hardware Fingerprint to Access Token:

Enhancing the Authentication on loT Devices

Yue Xiao*, Yi He, Xiaoli Zhang, Qian Wang, Renjie
Xie, Kun Sun, Ke Xu, Qi Li

loT devices need reliable authentication

Embedded devices are an important part of our daily lives.

~ A_ They are associated with
ﬂ\ el = ‘ - Daily Travel
S =y i
N\ \ e - Personal Property

Car Key Hardware Wallet Smart Homes - Home Life

loT devices need reliable authentication
Embedded devices are an important part of our daily lives.

~ o They are associated with
' = - Daily Travel

W e - Personal Property

Car Key Hardware Wallet Smart Homes - Home Life

Token-based authentication solutions suffer from token compromise.

Risks brought by token compromise
- Property Loss

- Privacy Disclosure

- Tax Fraud

Flipper Zero

Car Key Clone'2: The attacker uses Flipper Zero to
copy the key fob, then unlocks the victim’s car.

1 Hackers can clone tesla key fobs in seconds. https://www.esat.kuleuve n.be/cosic/news/fast-furious-and-insecure-passive-keyless-entry-and-st art-in-modern-supercars/.
2 Flipper Zero Car Key Signal - Unlock Car Key FOB Hack. https://www.youtube.com/watch?v=HwdoHMVKTpU

IoT devices need reliable authentication

Embedded devices are an important part of our daily lives.

~ ===
L
-

Car Key Hardware Wallet Smart Homes

They are associated with
- Daily Travel

- Personal Property

- Home Life

Token-based authentication solutions suffer from token compromise.

Risks brought by token compromise
- Property Loss
- Privacy Disclosure

- Tax Fraud

Flipper Zero

Car Key Clone'2: The attacker uses Flipper Zero to
copy the key fob, then unlocks the victim’s car.

Need unclonable authentication factors!

1 Hackers can clone tesla key fobs in seconds. https://www.esat.kuleuve n.be/cosic/news/fast-furious-and-insecure-passive-keyless-entry-and-st art-in-modern-supercars/.
2 Flipper Zero Car Key Signal - Unlock Car Key FOB Hack. https://www.youtube.com/watch?v=HwdoHMVKTpU

A Solution: Hardware-based Authentication

Unclonable?

Two ways to use:

Origin Token > ‘

Hardware Fingerprints

As new identifier

Y

Bind authentication to hardware fingerprints.

\
challenge =
server @
=7

response hardware
2o

Challenge response protocol

A Solution: Hardware-based Authentication

Unclonable?

Two ways to use:

Bind authentication to hardware fingerprints.

\
challenge =

Origin Token server > B;E
> ‘@ response hardware
/

Hardware Fingerprints

2

Limitations

As new identifier Challenge response protocol

- Require extra hardware that may not be supported on MCUs.

- Difficult to prevent man-in-the-middle (MiTM) adversaries.

Existing Limitation: Man-in-the-middle Adversaries

loT devices are resource constraint to adopt a secure implementation of TLS?,

3 o
and even do not encrypt messages®. Insecure Communication Channel

' MCU <—:—Backend Backend :

. \ NERETITT Request i . Request :
- WRequest |:' ' g @ 1
> T Challenge : Challenge ‘
Challenge |
| < Backend 2 ;
' l@---- >(fn)y----- »' ----- r ML Models ‘

@ Response R 3'@ ;;a?‘zware ' [A__] 3=
— I t == = 1
A) 3 eal e Response @) Response © f
Verify Verify Verify !

Reuse Attack Mimic Attack

2Tls/pki challenges and certificate pinning techniques for iot and m2m secure communications. Daniel Diaz-Sanchez et al. IEEE Communications Surveys Tutorials, 2019.
3 Breakmi: Reversing, exploiting and fixing xiaomi fitness tracking ecosystem. Marco Casagrande et al. IACR 2022.

Threat Model and Assumption

Attackers: attempt to impersonate legitimate devices.

55""': WRequest @ : : Request @ E ! ' Request @
L= M H - ! : > 1 : > .
oo Challenge ' I Challenge ' : Challenge '
; ' = Backend , : | < Backend | : | = Backend |
E o Response — : E i Response = X E Response = ;
= -3y B -y = -4
; Verify l Verify : Verify
Tampering Attack Hardware Mimic Attack Software Mimic Attack
Assumptions

- Devices are not compromised locally or remotely.

- A secure environment to collect hardware fingerprints (once).

Our Solution: Unique Hardware-based Access Token

......................................

' | client !
' ﬁnessage Mapping\
MCU '

I I I I
(T111] 1 Voltage Numbe Rate Address
!
1

5 Hardware
Features ,nc ppy RTC SRAM

Step-1: Collect hardware fingerprints (secure env)

Step-2: Generate token for the request

2-1: Map the request into hardware tasks

Request v
! Data
2-2: Obtain raw fingerprints via hardware = - Poisoning
2-3: Generate token (poisoned fingerprints) :Backend
2-4: Send request with token to the backend te———FINQOIDHIN 1 —
Verifier

Step-3: Verify fingerprints on the backend

Backend Allow?

......................................

A Running Example

Request
\‘\\ /api/1/vehicles/{id}

{

"op": DOOR_UNLOCK (0x0),

A Running Example

Request Message Mapping
N\, /api/1/vehicles/{id} . Hash(0xO0,)
{ =10 | 10101 | 0011
args

Data poisoning Task Excuting

42822

"op": DOOR_UNLOCK (0x0), ek, task
| [2631, 41822] DAC_ADC(10101, 0011)

A Running Example

Request Message Mapping i

N\, /api/1/vehicles/{id} . Hash(0x0,)

{ i =10 | 10101 | 0011 !

"op": DOOR_UNLOCK (0x0), i k. sk 5

: id args !

. Data poisoning Task Excuting

| 42822 | [2631,41822] DAC_ADC(10101, 0011)
Message Mapping Fingerprint Predictor Verifier

. Hash(0x0,) F,(10101, 0011) [2631, 42822] 3=

. =10 10101 | 0011 =[2630, 41820] [2630, 41820] ! =0
i task ta\gkargs N x '

How to select and use hardware features?

Represent a hardware module as (arguments, fingerprint) pairs.
Select Feature: Check existing works and examine all potential features in datasheets.

Use Feature: Design execution tasks with arguments for each hardware module.

P\ N\

arguments — [3\S=8] —— fingerprint e |::>

A\ 4

(arguments), fingerprint)

hardware hardware (arguments,, fingerprint,)

How to select and use hardware features?

Represent a hardware module as (arguments, fingerprint) pairs.
Select Feature: Check existing works and examine all potential features in datasheets.

Use Feature: Design execution tasks with arguments for each hardware module.

3 3 . .
C . , \" (arguments ,, fingerprint)
arguments — [§*~8] —— fingerprint A e |::>
arguments , fingerprint
hardware hardware (arg . fingerprint)
—e— device0 —e— devicel —+— device2 —v— device3

8000 0.30

Prevent Hardware Mimic Attacks

6000 0.25
. 20.20
Hardware features are unique among - B !
devices. With the same arguments, - 0.10 a
the fingerprints are different. Zzz

L 0 50 100 150 200 250 4310 4320 4330 4340 4350 4360
Theory voltage Output value

Read voltage

How to ensure the uniqueness of each token?
Message Mapping:

Request Hash(op,payload ,nonce) = h,

(op, payload , payload,, ...) — — Hash(h_,h._,...) = digest (tasks)

172
Hash(op,payload,,nonce) = h,

How to ensure the uniqueness of each token?
Message Mapping:

Request Hash(op,payload ,nonce) = h,

(op, payload , payload,, ...) — — Hash(h,h,,...) = digest (tasks)
Hash(op,payload,,nonce) = h,

Add nonce: The same operations
have different digests.

Uniqueness

Hash function: Changes to the

Resist tamperin
perng message will change the tasks.

How to prevent the software mimic attack?

' Collect (arguments, fingerprint) pairs and learn the relationship.

How to prevent the software mimic attack?

' Collect (arguments, fingerprint) pairs and learn the relationship.

Make tasks more complex

—>

Need to explore hardware further
Simple relations should be discarded

More powerful attackers can still learn

How to prevent the software mimic attack?

Make tasks more complex —>

Disrupt the learning process —— >

Need to explore hardware further
Simple relations should be discarded

More powerful attackers can still learn

Hardware independent
All relationships can be used

Fault data will fail the learning

Implementation: Select a portion of the fingerprints (e.g., 5 out of 10) and poison them as,

fp =fp, * (noise+1)+C

poisoned

How to verify token at the backend?

arguments ——

Predictor

fingerprint

— fingerprint’ —— @ — True or False

How to verify token at the backend?

fingerprint

arguments — | Predictor | — fingerprint’ —— @ — True or False

Set up: Collect enough (argments, fingerprint) pairs for training. (secure env)

Authenticate: Count the number of fingerprints verified.

k pairs are verified
k > threshold?

[

[

)) JJ — Predictor and Verifier
arguments, fingerprint

total_num: total used_num: number of

. . . accept_num: threshold
number of pairs non-poisoned pairs

The backend does not know if a pair is poisoned, but just counts the verified number.

MCU-Token Implementation and Evaluation Setup

Source code: Hardware deVices
https://github.com/loTAccessControl/MCU-Token Model-brand Microcontroller Frequency # of devices
ESP32S2 Xtensa LX7 240MHz 30
STM32F103 Cortex M4 72MHz 20
Selected hardware features STMAF42 | Comex M ISOMIZ m

Modules Features Description

DAC/ADC Voltage features.

FPU Float point arithmetic features.
PWM Voltage and frequency features.
RTC Frequency features and phase features.

SRAM Storage medium features.

https://github.com/IoTAccessControl/MCU-Token

Usability of Different Hardware Features

Various parameter settings

Evaluation on different hardware features

ESP32S2 STM32F429 STM32F103

TPR FPR TPR FPR TPR FPR
DAC_ADC 83.74 8.58 82.73 16.83 96.25 37.90
FPU 76.59 38.90 83.50 29.94 76.65 36.63
PWM 84.83 17.54 84.90 37.67 80.00 35.57
RTCFre 91.76 1.96 89.88 7.49 99.19 1.96
RTCPha 77.04 58.38 73.88 58.10 74.56 36.88
SRAM 94.27 0.01 98.69 0.05 96.89 0.03
Ensemble 96.63 9.44 97.06 14.10 97.94 14.31
Ensemble* 98.47 1.06 97.67 6.89 98.68 1.64

" The results of excluding useless features, i.e., FPU and RTCPhra for
ESP32S2, PWM and RTCPhra for STM32F249, DAC/ADC, FPU and PWM

for STM32F103.

TPR: The rate at which a device is correctly verified

FPR: The rate at which a device is identified as another device

1.0

0.8

0.6

0.4

0.2

0.0

—— TPR

—— FPR

7 s S B

M

1.0
0.8
0.6

0.4

0.2 ¥
0.0

2 4 6 8 10
used_num

(a) Different usedNum

Environment settings

—#— DAC_ADC —O— FPU

RTCFre RTCPha
0.10

=,

2 3 4
accpect_num

ot

(b) Different accept Num

—O— SRAM
PWM

0.08 /\o
o o

50.06
g
70.04
A

0.02 ~ <

0.00{ © O o

normal dry wet

Security Against Various Attacks

Hardware Mimic Attack
: The rate at which attackers

successfully fool the backend. ESP32S2 STM32F103 STM32F429
T ing A k ESP32S2 0.0188 0.0000 0.0000
ampering Attac STM32F103 0.0001 0.0606 0.0078
e — s . STM32F429 0.0000 0.0000 0.1058

i 1 f
0.8 7

Use the device in the row to mimic the device in

Success Average Times

g » the column.
(?) 10> T
g: 104 i, G|
0.0 Q\"\‘ — 10° /
00 ovputsize 2 I ouputeize Identify the pOiSOI’IEd pairs
(a) Tampering attack success rate (b) Attack success average number
DAC/ADC RTCFre SRAM PWM
Tamperlng Attack: Change the request, but keep Unsupervised learning 0.5201 0.5042 0.4993 0.5354
the tasks the same as before. Supervised learning 0.5142 05220 0.5409 0.5293
Incremental learning 0.5120 0.5005 0.5032 0.4889

Extra-device 0.9682 0.5745 0.4959 0.8991

Security Against Various Attacks

Software Mimic Attack

i —o— none s— filter —o— correct filter + correct (a) Used_num: the
7 _ 0.4l _04 percentage of normal pairs.
= a o
2] 7] 7]
§0) § § (b) Accept_num: the difficulty
@ 0 0.2 0 0.2 of passing authentication
8 3 8
S S S
"’0 o8 "’00 | | "’0 ol . | (c) Ratio: the ratio of normal
' ' 4 5 S0l 02 03 04 05 pairs obtained by attackers
used_num accept _num Ratio of used pairs
(a) Different usedNum (b) Different accept Num (c) Different used ratio
Results when authenticating with only one feature
0.8
& . —=+— DAC_ADC The poisoned pairs decrease the
0.
2 PWM success rate of attackers.
= “— RTCFre
g —o— SRAM
0.2
00602 03 04 05 06 %1 0z 03 04 05
Ratio of used pairs Ratio of used pairs

(a) Authenticating without protection (b) Authenticating with protection

Other Evaluations

Do poisoned pairs affect normal authentication?

We use poisoned pairs for authentication.

(Right Figure) Poisoned pairs are rejected by the backend.

What about the overhead of power and time?

Baseline: AES-128 encryption

Encrypt Voltage FPU Clock Storage

ESP32S2 0.23wW 022W 022W 0.19W 0.17W

2ms 23ms 97ms 10ms 10ms
0.74W 0.79W 0.76W 0.79W 0.71W

SIENMSZEAZY 2ms 39ms 8ms 47ms Ims
STM32F103 0.15W 0.16W 0.16W 0.15W 0.15W

Sms 114ms 17ms 8ms 1ms

—«— DAC_ADC —o— SRAM
RTCFre PWM
1.0 i

0.8

0.2

0-0550 0.02 0.01 0.06 0.08 0.10

Noise

We test the power and time to encrypt and
get fingerprints.

Conclusion

e We perform a systematic study on hardware features for fingerprinting

the commercial-off-the-shell MCUs.

® We introduce MCU-Token, a hardware fingerprint based authentication
mechanism that resists various attacks.

e We prototype MCU-Token and demonstrate its usability and

performance by evaluating it on 60 loT devices of three types.

Thanks for listening

Q&A

