
From Hardware Fingerprint to Access Token:

Enhancing the Authentication on IoT Devices
Yue Xiao*, Yi He, Xiaoli Zhang, Qian Wang, Renjie

Xie, Kun Sun, Ke Xu, Qi Li

IoT devices need reliable authentication
Embedded devices are an important part of our daily lives.

Hardware Wallet Smart HomesCar Key

They are associated with

- Daily Travel

- Personal Property

- Home Life

- …

IoT devices need reliable authentication
Embedded devices are an important part of our daily lives.

Hardware Wallet Smart HomesCar Key

Token-based authentication solutions suffer from token compromise.

Car Key Clone1, 2 : The attacker uses Flipper Zero to
copy the key fob, then unlocks the victim’s car.

Flipper Zero

1 Hackers can clone tesla key fobs in seconds. https://www.esat.kuleuve n.be/cosic/news/fast-furious-and-insecure-passive-keyless-entry-and-st art-in-modern-supercars/.
2 Flipper Zero Car Key Signal - Unlock Car Key FOB Hack. https://www.youtube.com/watch?v=HwdoHMVKTpU

They are associated with

- Daily Travel

- Personal Property

- Home Life

- …

copy unlock

Risks brought by token compromise

- Property Loss

- Privacy Disclosure

- Tax Fraud
- …

IoT devices need reliable authentication
Embedded devices are an important part of our daily lives.

Hardware Wallet Smart HomesCar Key

Token-based authentication solutions suffer from token compromise.

Car Key Clone1, 2 : The attacker uses Flipper Zero to
copy the key fob, then unlocks the victim’s car.

Flipper Zero

Need unclonable authentication factors!

1 Hackers can clone tesla key fobs in seconds. https://www.esat.kuleuve n.be/cosic/news/fast-furious-and-insecure-passive-keyless-entry-and-st art-in-modern-supercars/.
2 Flipper Zero Car Key Signal - Unlock Car Key FOB Hack. https://www.youtube.com/watch?v=HwdoHMVKTpU

They are associated with

- Daily Travel

- Personal Property

- Home Life

- …

copy unlock

Risks brought by token compromise

- Property Loss

- Privacy Disclosure

- Tax Fraud
- …

A Solution: Hardware-based Authentication

 Origin Token

Hardware Fingerprints

As new identifier

Two ways to use:

Challenge response protocol

server

hardware

challenge

response

Unclonable? Bind authentication to hardware fingerprints.

A Solution: Hardware-based Authentication

 Origin Token

Hardware Fingerprints

As new identifier

Two ways to use:

Challenge response protocol

server

hardware

challenge

response

Limitations

- Require extra hardware that may not be supported on MCUs.

- Difficult to prevent man-in-the-middle (MiTM) adversaries.

Unclonable? Bind authentication to hardware fingerprints.

Existing Limitation: Man-in-the-middle Adversaries

IoT devices are resource constraint to adopt a secure implementation of TLS2,

and even do not encrypt messages3.

2 Tls/pki challenges and certificate pinning techniques for iot and m2m secure communications. Daniel Díaz-Sánchez et al. IEEE Communications Surveys Tutorials, 2019.
3 Breakmi: Reversing, exploiting and fixing xiaomi fitness tracking ecosystem. Marco Casagrande et al. IACR 2022.

Insecure Communication Channel

Reuse Attack Mimic Attack

Threat Model and Assumption

Attackers: attempt to impersonate legitimate devices.

 Tampering Attack Hardware Mimic Attack Software Mimic Attack

Assumptions

- Devices are not compromised locally or remotely.

- A secure environment to collect hardware fingerprints (once).

Our Solution: Unique Hardware-based Access Token

Key idea: Bind each request to a unique

hardware-based access token.

Step-1: Collect hardware fingerprints (secure env)

Step-2: Generate token for the request

2-1: Map the request into hardware tasks

2-2: Obtain raw fingerprints via hardware

2-3: Generate token (poisoned fingerprints)

2-4: Send request with token to the backend

Step-3: Verify fingerprints on the backend

A Running Example

/api/1/vehicles/{id}
{

"op": DOOR_UNLOCK (0x0),

}

Request

A Running Example

/api/1/vehicles/{id}
{

"op": DOOR_UNLOCK (0x0),

"nonce": 1700902800
"token": [2631, 42822]

}

Request

Hash(0x0,1700902800)
=10 | 10101 | 0011

Message Mapping

task
id

task
args

DAC_ADC(10101, 0011)

Task ExcutingData poisoning

[2631, 41822]

A Running Example

/api/1/vehicles/{id}
{

"op": DOOR_UNLOCK (0x0),

"nonce": 1700902800
"token": [2631, 42822]

}

Request

Hash(0x0,1700902800)
=10 | 10101 | 0011

Message Mapping

task
id

task
args

DAC_ADC(10101, 0011)

Task ExcutingData poisoning

[2631, 41822]

Hash(0x0,1700902800)
=10 | 10101 | 0011

Message Mapping

task
id

task
args

Fingerprint Predictor

F
2
(10101, 0011)

=[2630, 41820]

Verifier

[2631, 42822]
[2630, 41820]

√ ×

How to select and use hardware features?

Select Feature: Check existing works and examine all potential features in datasheets.

Use Feature: Design execution tasks with arguments for each hardware module.

hardware

arguments fingerprint

hardware

(arguments
0

, fingerprint
0
)

(arguments
k

, fingerprint
k
)

…

Represent a hardware module as (arguments, fingerprint) pairs.

How to select and use hardware features?

Select Feature: Check existing works and examine all potential features in datasheets.

Use Feature: Design execution tasks with arguments for each hardware module.

hardware

arguments fingerprint

hardware

(arguments
0

, fingerprint
0
)

(arguments
k

, fingerprint
k
)

…

Represent a hardware module as (arguments, fingerprint) pairs.

Prevent Hardware Mimic Attacks

Hardware features are unique among
devices. With the same arguments,
the fingerprints are different.

How to ensure the uniqueness of each token?

Message Mapping: Bind task arguments to the request via hash function.

(op, payload
0
, payload

1
, …)

Hash(op,payload
0
,nonce) = h

1

Hash(op,payload
1
,nonce) = h

2

Hash(h
1
,h

2
,...) = digest (tasks)

Request

How to ensure the uniqueness of each token?

Message Mapping: Bind task arguments to the request via hash function.

Uniqueness
Add nonce: The same operations

have different digests.

Resist tampering
Hash function: Changes to the

message will change the tasks.

(op, payload
0
, payload

1
, …)

Hash(op,payload
0
,nonce) = h

1

Hash(op,payload
1
,nonce) = h

2

Hash(h
1
,h

2
,...) = digest (tasks)

Request

How to prevent the software mimic attack?

Collect (arguments, fingerprint) pairs and learn the relationship.

How to prevent the software mimic attack?

Collect (arguments, fingerprint) pairs and learn the relationship.

Make tasks more complex

Need to explore hardware further

Simple relations should be discarded

More powerful attackers can still learn

How to prevent the software mimic attack?

Collect (arguments, fingerprint) pairs and learn the relationship.

Make tasks more complex

Need to explore hardware further

Simple relations should be discarded

More powerful attackers can still learn

Disrupt the learning process

Hardware independent

All relationships can be used

Fault data will fail the learning

Implementation: Select a portion of the fingerprints (e.g., 5 out of 10) and poison them as,

fp
poisoned

 = fp
raw

 * (noise + 1) + C

How to verify token at the backend?

Predictorarguments fingerprint’ Verifier

fingerprint

True or False

Learn from hardware and compare fingerprints.

How to verify token at the backend?

Predictorarguments fingerprint’

Set up: Collect enough (argments, fingerprint) pairs for training. (secure env)

Verifier

fingerprint

True or False

Authenticate: Count the number of fingerprints verified.

arguments, fingerprintarguments, fingerprint
arguments, fingerprint

Predictor and Verifier
k pairs are verified
k > threshold?

total_num: total
number of pairs

used_num: number of
non-poisoned pairs

accept_num: threshold

The backend does not know if a pair is poisoned, but just counts the verified number.

Learn from hardware and compare fingerprints.

MCU-Token Implementation and Evaluation Setup

Source code:

https://github.com/IoTAccessControl/MCU-Token

Selected hardware features

Modules Features Description

DAC/ADC Voltage features.

FPU Float point arithmetic features.

PWM Voltage and frequency features.

RTC Frequency features and phase features.

SRAM Storage medium features.

Hardware devices

https://github.com/IoTAccessControl/MCU-Token

Usability of Different Hardware Features

Evaluation on different hardware features

TPR: The rate at which a device is correctly verified
FPR: The rate at which a device is identified as another device

Various parameter settings

Environment settings

Security Against Various Attacks

Hardware Mimic Attack

Tampering Attack

Use the device in the row to mimic the device in
the column.
Success rate: < 10% (average < 1%)

Tampering Attack: Change the request, but keep
the tasks the same as before.

(a) Success rate < 0.1%
(b) Retry times for a successful attack > 107

Identify the poisoned pairs

Near random guessing via software methods

Success Rate: The rate at which attackers
successfully fool the backend.

Security Against Various Attacks
Software Mimic Attack

(a) Used_num: the
percentage of normal pairs.

(b) Accept_num: the difficulty
of passing authentication

(c) Ratio: the ratio of normal
pairs obtained by attackers

Results when authenticating with only one feature

The poisoned pairs decrease the
success rate of attackers.

Poisoned pairs prevent attackers
from learning the relationships.

Other Evaluations

Baseline: AES-128 encryption

We test the power and time to encrypt and
get fingerprints.

The power consumption is low.

Time is acceptable (31ms in average).

What about the overhead of power and time?

Do poisoned pairs affect normal authentication?

We use poisoned pairs for authentication.

(Right Figure) Poisoned pairs are rejected by the backend.

Normal pairs ensure that normal authentication passes.

Conclusion

● We perform a systematic study on hardware features for fingerprinting

the commercial-off-the-shell MCUs.

● We introduce MCU-Token, a hardware fingerprint based authentication

mechanism that resists various attacks.

● We prototype MCU-Token and demonstrate its usability and

performance by evaluating it on 60 IoT devices of three types.

Thanks for listening
Q&A

CodePaper

