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❏ Different applications contain secrets:
❏ Inputs, outputs, hashes, crypto keys.
❏ How can an attacker learn such secrets?
❏ Exploit some non-functional characteristics of computation

❏ time, power consumption (Side Channels)
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❏ Cache side channels
❏ Power side channels
❏ Software side channels
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Common Side Channels

public bool check (String 
guess){
   for(int i =0; i<guess.len; 
i++){
      if(guess[i] != 
password[i])

    return false;
  }
  return true;
}
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Timing Side Channels (Timing Channels)

❏ Variation in runtime can 
leak secret information.
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Main Contribution
❏ Timing side channels can arise in adaptive neural networks
❏ They can leak confidential information.
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Conventional Neural Networks
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Adaptive Neural Networks

Branchy-AlexNet
(Teerapittayanon et al., 2016)

❏ Key insight
❏ Not all inputs require 

the same amount of 
processing



14

Branchy-AlexNet
(Teerapittayanon et al., 2016)

DOG
Output
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Why Adaptive Neural Networks?
❏ Not one size fits all
❏ Lower computational cost
❏ Faster inference times
❏ Deployable on smaller devices



21

Branchy-AlexNet
(Teerapittayanon et al., 2016)
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Branchy-AlexNet
(Teerapittayanon et al., 2016)
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Branchy-AlexNet
(Teerapittayanon et al., 2016)

Early exits partition the inputs space
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Let’s take a look at an example…

Branchy-AlexNet
(Teerapittayanon et al., 2016)

Branchy-Alexnet trained on the 
CANCER dataset
❏ Images of benign and malignant 

skin moles



25

Branchy-AlexNet
(Teerapittayanon et al., 2016)

Branchy-Alexnet trained on the 
CANCER dataset
❏ Images of benign and malignant 

skin moles
❏ Given a skin mole image predict 

the diagnosis



26

Branchy-AlexNet
(Teerapittayanon et al., 2016)

Branchy-Alexnet trained on the 
CANCER dataset
❏ Images of benign and malignant 

skin moles
❏ Given a skin mole image predict 

the diagnosis
❏ Random user’s shouldn’t be able 

to learn the model’s prediction
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Branchy-AlexNet
(Teerapittayanon et al., 2016)

Questions we would like to answer:
i. Is there a correlation between 

inference times and exits?
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Branchy-AlexNet
(Teerapittayanon et al., 2016)

Questions we would like to answer:
i. Is there a correlation between 

inference times and exits?
ii. Are there any exits where the 

distribution is biased towards a specific 
attribute?
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Is there a correlation 
between inference times 
and exits?
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Are there any exits where the distribution is 
biased towards a specific attribute?
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When can this be a problem?
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When can this be a problem?

Adversary capabilities
❏ Can send their own 

queries
❏ Can sniff packets over 

the network
❏ Can’t decrypt packets
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What can the Adversary Learn ?
❏ A sensitive attribute of the user’s input (e.g class label)
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Adversary Strategy
1. Generate a timing profile

Time 
Profile

ti → yi
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Adversary Strategy
1. Generate a timing profile
2. Train an attack model using timing profile

Timing Profile Attack Model Trained Attack Model
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Adversary Strategy
1. Generate a timing profile
2. Train an attack model using timing profile
3. Given an observed timing measurement, use the attack model to infer the  

sensitive attribute

Time measurement (ti) Trained Attack Model Private information



40

Evaluating Success
❏ Attack Success Rate (ASR) 
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Evaluating Success
❏ Attack Success Rate (ASR) 
❏ Attack Success Rate (ASR/Cluster) 
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Evaluation & Results

❏ Timing measurements over a LAN
❏ Experimented using six different variants of Adaptive Neural 

Networks
❏ Branchy-AlexNet
❏ Shallow Deep Networks (SDNet)
❏ Resolution Adaptive Networks (RANet)
❏ Multi Scale Dense Networks (MSDNet)
❏ Blockdrop
❏ Skipnet
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Evaluation & Results

❏ Timing measurements over a LAN
❏ Experimented using six different variants of Adaptive Neural 

Networks
❏ Across 4 different datasets

❏ CIFAR 10 Dataset
❏ CIFAR 100 Dataset
❏ CANCER Dataset
❏ FAIRFACE Dataset
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Evaluation & Results

❏ Timing measurements over a LAN
❏ Experimented using six different variants of Adaptive Neural 

Networks
❏ Across 4 different datasets
❏ Considering 3 different attributes

❏ Class label
❏ Generalized class label
❏ Adversarial inputs
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Evaluation & Results
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Effect of Hyperparameter Tuning
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Effect of Hyperparameter Tuning
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Input Distribution of benign and malignant skin mole images across the first time cluster of Branchy-AlexNet, 
SDNet, RANet and MSDNet

Interesting Observations
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Input Distribution of FAIRFACE age classes across the first time cluster of Branchy-AlexNet, SDNet, RANet and 
MSDNet

Interesting Observations
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Conclusion

https://github.com/akinsanyaayomide/AD
NNTimeLeaks/tree/main

https://github.com/akinsanyaayomide/ADNNTimeLeaks/tree/main
https://github.com/akinsanyaayomide/ADNNTimeLeaks/tree/main


60



❏ Deliberate crafting of timing side channels

❏ Automatic testing and validation of ADNNs for timing side channels

❏ Online monitoring of ADNNs for timing side channels
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Future Work


