

Timing Channels in Adaptive Neural Networks

NDSS February 27th, 2024

Ayomide Akinsanya, Tegan Brennan

Different applications contain secrets:

- Different applications contain secrets:
 - User inputs, passwords, crypto keys.

- Different applications contain secrets:
 - □ User inputs, passwords, crypto keys.

- Different applications contain secrets:
 - □ Inputs, outputs, hashes, crypto keys.
 - How can an attacker learn such secrets?
 - Main channel: directly obtain the secret

- Different applications contain secrets:
 - □ Inputs, outputs, hashes, crypto keys.
 - How can an attacker learn such secrets?
 - Exploit some non-functional characteristics of computation
 - □ time, power consumption

- Different applications contain secrets:
 - □ Inputs, outputs, hashes, crypto keys.
 - How can an attacker learn such secrets?
 - Exploit some non-functional characteristics of computation
 - □ time, power consumption (Side Channels)

Common Side Channels

- **Cache side channels**
- Power side channels
- □ Software side channels

Timing Side Channels (Timing Channels)

Variation in runtime can leak secret information.

Main Contribution

Timing side channels can arise in adaptive neural networks

Main Contribution

- □ Timing side channels can arise in adaptive neural networks
- □ They can leak confidential information.

Conventional Neural Networks

Input

 Key insight
Not all inputs require the same amount of processing

Branchy-AlexNet (Teerapittayanon et al., 2016)

1870

□ Not one size fits all

- □ Not one size fits all
- Lower computational cost

- □ Not one size fits all
- □ Lower computational cost
- □ Faster inference times

- □ Not one size fits all
- Lower computational cost
- □ Faster inference times
- Deployable on smaller devices

Early exits partition the inputs space

Let's take a look at an example...

Branchy-Alexnet trained on the CANCER dataset

Images of benign and malignant skin moles

Branchy-Alexnet trained on the CANCER dataset

- Images of benign and malignant skin moles
- Given a skin mole image predict the diagnosis

Branchy-Alexnet trained on the CANCER dataset

- Images of benign and malignant skin moles
- Given a skin mole image predict the diagnosis
- Random user's shouldn't be able to learn the model's prediction

Questions we would like to answer:

i. Is there a correlation between inference times and exits?

Questions we would like to answer:

- i. Is there a correlation between inference times and exits?
- ii. Are there any exits where the distribution is biased towards a specific attribute?

Is there a correlation between inference times and exits?

Are there any exits where the distribution is biased towards a specific attribute?

Adversary capabilities

Can send their own queries

Adversary capabilities

- Can send their own queries
- Can sniff packets over the network

Adversary capabilities

- Can send their own queries
- Can sniff packets over the network
- □ Can't decrypt packets

What can the Adversary Learn ?

□ A sensitive attribute of the user's input (e.g class label)

Adversary Strategy

1. Generate a timing profile

1870

Adversary Strategy

- 1. Generate a timing profile
- 2. Train an attack model using timing profile

Adversary Strategy

- 1. Generate a timing profile
- 2. Train an attack model using timing profile
- 3. Given an observed timing measurement, use the attack model to infer the sensitive attribute

Evaluating Success

□ Attack Success Rate (ASR)

Evaluating Success

Attack Success Rate (ASR)

Evaluating Success

- Attack Success Rate (ASR)
- Attack Success Rate (ASR/Cluster)

□ Timing measurements over a LAN

- Timing measurements over a LAN
- Experimented using six different variants of Adaptive Neural Networks
 - Branchy-AlexNet
 - □ Shallow Deep Networks (SDNet)
 - Resolution Adaptive Networks (RANet)
 - □ Multi Scale Dense Networks (MSDNet)
 - Blockdrop
 - Skipnet

- Timing measurements over a LAN
- Experimented using six different variants of Adaptive Neural Networks
- □ Across 4 different datasets
 - CIFAR 10 Dataset
 - □ CIFAR 100 Dataset
 - CANCER Dataset
 - □ FAIRFACE Dataset

- Timing measurements over a LAN
- Experimented using six different variants of Adaptive Neural Networks
- □ Across 4 different datasets
- Considering 3 different attributes
 - Class label
 - Generalized class label
 - □ Adversarial inputs

Arch Type	Architecture	Dataset	Attribute	No Clusters	ASR/Cluster	Cluster Input Distribution	RandGA	ASR
	AlexNet	CANCER	Class Label	1	46.76	100	50	46.76
	AlexNet	FAIRFACE	Class Label	1	31.64	100	33.33	31.64
Non-Adaptive	VGG-16	CANCER	Class Label	2	[47.57, 56.1]	[72.96, 27.04]	50	50.0
Networks	VGG-16	FAIRFACE	Class Label	2	[36.81, 33.81]	[26.06, 73.94]	33.33	34.57
	ResNet-110	CANCER	Class Label	1	46.53	100	50	46.53
	ResNet-110	FAIRFACE	Class Label	1	34.57	100	33.33	34.57
	Branchy-AlexNet	CIFAR10	Class Label	3	[13.52, 13.93, 22.22]	[44.68, 26.51, 28.81]	10	16.11
	Branchy-AlexNet	CIFAR100	Generalized Label	4	[16.67, 13.04, 8.05, 5.21]	[0.84, 6.2, 2.62, 88.34]	5	6.00
Forly	Branchy-AlexNet	CANCER	Class Label	3	[82.61 , 69.01, 60.53]	[27.33, 35.66, 37.00]	50	70.37
Early	Branchy-AlexNet	FAIRFACE	Class Label	3	[78.26 , 64.52, 41.46]	[4.20, 11.08, 84.72]	33.33	45.71
Networks	SDNet	CIFAR10	Class Label	5	[19.22, 10.83, 14.71, 21.74, 19.61]	[21.22, 42.98, 29.32, 2.75, 3.73]	10	14.44
	SDNet	CIFAR100	Generalized Label	3	[5.64, 7.62, 9.63]	[66.98, 12.67, 20.35]	5	6.67
	SDNet	CANCER	Class Label	3	[64.5, 66.67, 62.58]	[57.58, 2.84, 39.58]	50	63.89
	SDNet	FAIRFACE	Class Label	5	[94.29 , 42.0, 36.04	[5.42, 13.06, 17.75,	33 33	43.21
	SDIVEL	TAINIACL	Class Label	5	36.88, 43.3]	22.19, 41.58]	33.33	45.21
	RANet	CIFAR10	Class Label	3	[25.0, 17.23, 10.58]	[2.23, 14.71, 83.06]	10	12.06
	RANet	CIFAR100	Generalized Label	3	[10.34, 9.47, 6.29]	[2.77, 18.72, 78.51]	5	7.06
Model	RANet	CANCER	Class Label	3	[95.05 , 62.07, 66.39]	[23.35, 21.55, 55.09]	50	72.26
Cascade	RANet	FAIRFACE	Class Label	3	[81.44 , 34.84, 45.45]	[12.83, 20.17, 67.0]	33.33	43.98
Networks	MSDNet	CIFAR10	Class Label	3	[12.94, 13.51, 20.47]	[67.90, 23.76, 8.34]	10	13.61
THETWOIRS	MSDNet	CIFAR100	Generalized Label	3	[9.28, 6.37, 7.27]	[19.98, 37.62, 42.4]	5	7.33
	MSDNet	CANCER	Class Label	2	[89.32 , 61.4]	[20.83, 79.17]	50	68.06
	MSDNet	FAIRFACE	Class Label	2	[77.38 , 36.17]	[10.92, 89.08]	33.33	41.51
	BlockDrop	CIFAR10	Class Label	2	[98.94 , 21.57]	[4.80, 95.20]	10	25.93
	BlockDrop	CIFAR100	Generalized Label	3	[100 ,66.67,4.75]	[0.04, 0.41, 99.56]	5	5.06
Nerros Di Sa	BlockDrop	CIFAR10	Adversarial Input	2	[100 ,61.16]	[4.17, 95.83]	50	62.71
Dynamic Networks	SkipNet	CIFAR10	Class Label	5	[0, 60.98 , 16.57, 16.51, 0]	[0.01, 1.66, 55.67, 42.64, 0.01]	10	17.56
	SkipNet	CIFAR100	Generalized Label	3	[0, 8.36, 6.54]	[0.1, 30.93, 68.97]	5	7.11
	SkipNet	CANCER	Class Label	5	[77.08 , 45.83, 58.73, 51.79, 50.0]	[10.29, 31.62, 30.04, 27.88, 0.17]	50	54.63
	SkipNet	FAIRFACE	Class Label	4	[39.22, 38.06, 48.65, 0]	[46.25, 42.52, 11.19, 0.03]	33.33	39.81
	SkipNet	CIFAR10	Adversarial Input	5	[0, 66.35, 52.78, 55.23, 0]	[0.01, 17.94, 31.99, 50.04, 0.01]	50	56.51

Arch Type	Architecture	Dataset	Attribute	No Clusters	Clusters Accuracy	Cluster Input distribution	Random Guess	Accuracy
	RANet	CIFAR10	Class Label	3	[25.0, 17.23, 10.58]	[2.23, 14.71, 83.06]	10	12.06
	RANet	CIFAR100	Generalized Label	3	[10.34, 9.47, 6.29]	[2.77, 18.72, 78.51]	5	7.06
Model Cascade Networks	RANet	CANCER	Class Label	3	[95.05 , 62.07, 66.39]	[23.35 , 21.55, 55.09]	50	72.26
	RANet	FAIRFACE	Class Label	3	[81.44 , 34.84, 45.45]	[12.83 , 20.17, 67.0]	33.33	43.98
	MSDNet	CIFAR10	Class Label	3	[12.94, 13.51, 20.47]	[67.90, 23.76, 8.34]	10	13.61
	MSDNet	CIFAR100	Generalized Label	3	[9.28, 6.37, 7.27]	[19.98, 37.62, 42.4]	5	7.33
	MSDNet	CANCER	Class Label	2	[89.32 , 61.4]	[20.83 , 79.17]	50	68.06
	MSDNct	FAIRFACE	Class Label	2	[77.38 , 36.17]	[10.92 , 89.08]	33.33	41.51

Arch Type	Architecture	Dataset	Attribute	No Clusters	Clusters Accuracy	Cluster Input distribution	Random Guess	Accuracy
	BlockDrop	CIFAR10	Class Label	2	[98.94 , 21.57]	[4.80 , 95.20]	10	25.93
	BlockDrop	CIFAR100	Generalized Label	3	[100 ,66.67,4.75]	[0.04, 0.41, 99.56]	5	5.06
	BlockDrop	CIFAR10	Adversarial Input	2	[100 ,61.16]	[4.17 , 95.83]	50	62.71
Dynamic Networks	SkipNet	SkipNet CIFAR10	Class Label	5	[0, 60.98 , 16.57,	[0.01, 1.66, 55.67,	50	17.56
			Class Laber		16.51, 0]	42.64, 0.01]	50	
	SkipNet	CIFAR100	Generalized Label	3	[0, 8.36, 6.54]	[0.1, 30.93, 68.97]	5	7.11
	SkipNet C.	Net CANCER	Class Label	5	[77.08 , 45.83, 58.73,	[10.29, 31.62, 30.04,	50	54.63
					51.79, 50.0]	27.88, 0.17]	50	
	SkinNet	FAIRFACE	Class Label	4	[39.22, 38.06,	[46.25, 42.52,	33 33	39.81
	Skipitet	minumel	Cluss Luber	-	48.65, 0]	11.19, 0.03]	55.55	57.01
	SkipNet	CIFAR10	Adversarial Input	2	[0, 8.36, 6.54]	[0, 8.36, 6.54]	50	50

Arch Type	Architecture	Dataset	Attribute	No Clusters	Clusters Accuracy	Cluster Input distribution	Random Guess	Accuracy
Earla	Branchy-AlexNet	CIFAR10	Class Label	3	[13.52, 13.93, 22.22]	[44.68, 26.51, 28.81]	10	16.11
	Branchy-AlexNet	CIFAR100	Generalized Label	4	[16.67, 13.04, 8.05, 5.21]	[0.84, 6.2, 2.62, 88.34]	5	6.00
Early	Branchy-AlexNet	CANCER	Class Label	3	[82.61 , 69.01, 60.53]	[27.33, 35.66, 37.00]	50	70.37
Networks	Branchy-AlexNet	FAIRFACE	Class Label	3	[78.26 , 64.52, 41.46]	[4.20, 11.08, 84.72]	33.33	45.71
Networks	SDNet	CIFAR10	Class Label	5	[19.22, 10.83, 14.71, 21.74, 19.61]	[21.22, 42.98, 29.32, 2.75, 3.73]	10	14.44
	SDNct	CIFAR100	Generalized Label	3	[5.64, 7.62, 9.63]	[66.98, 12.67, 20.35]	5	6.67
	SDNet	CANCER	Class Label	3	[64.5, 66.67, 62.58]	[57.58, 2.84, 39.58]	50	63.89
	SDNet	FAIRFACE	Class Label	5	[94.29, 42.0, 36.04 36.88, 43.3]	[5.42, 13.06, 17.75, 22.19, 41.58]	33.33	43.21

Effect of Hyperparameter Tuning

Dataset	Architecture	Attribute	Exit Thresholds	Setting	Accurracy	Performance (secs)	No Clusters	ASR/Cluster
FAIRFACE	Branchy-AlexNet	Class Label	[2.0e-03, 5.0e-02]	Conservative	75.03	47.2	3	[100.0 , 57.63, 38.78]
FAIRFACE	Branchy-AlexNet	Class Label	[2.0e-02, 5.0e-02]	Balanced	74.81	45.2	3	[78.26 , 64.52, 41.46]
FAIRFACE	Branchy-AlexNet	Class Label	[5.0e-01, 5.0e-01]	Relaxed	73.33	34.9	3	[36.84, 46.72, 42.03]
FAIRFACE	SDNet	Class Label	[0.99, 0.99]	Conservative	78.64	50.8	5	[90.91 , 58.82, 57.47, 46.73, 43.77]
FAIRFACE	SDNet	Class Label	[0.95, 0.95]	Balanced	78.11	46.6	5	[94.29 , 42.0, 36.04 36.88, 43.3]
FAIRFACE	SDNet	Class Label	[0.8, 0.8]	Relaxed	77.11	39.9	5	[56.49, 42.31, 40.69, 44.55, 56.63]

Effect of Hyperparameter Tuning

Dataset	Architecture	Attribute	Exit Thresholds	Setting	Accurracy	Performance (secs)	No Clusters	ASR/Cluster
FAIRFACE	Branchy-AlexNet	Class Label	[2.0e-03, 5.0e-02]	Conservative	75.03	47.2	3	[100.0, 57.63, 38.78]
FAIRFACE	Branchy-AlexNet	Class Label	[2.0e-02, 5.0e-02]	Balanced	74.81	45.2	3	[78.26 , 64.52, 41.46]
FAIRFACE	Branchy-AlexNet	Class Label	[5.0e-01, 5.0e-01]	Relaxed	73.33	34.9	3	[36.84, 46.72, 42.03]
FAIRFACE	SDNet	Class Label	[0.99, 0.99]	Conservative	78.64	50.8	5	[90.91 , 58.82, 57.47, 46.73, 43.77]
FAIRFACE	SDNet	Class Label	[0.95, 0.95]	Balanced	78.11	46.6	5	[94.29 , 42.0, 36.04 36.88, 43.3]
FAIRFACE	SDNet	Class Label	[0.8, 0.8]	Relaxed	77.11	39.9	5	[56.49, 42.31, 40.69, 44.55, 56.63]

Interesting Observations

Input Distribution of benign and malignant skin mole images across the first time cluster of Branchy-AlexNet,

SDNet, RANet and MSDNet

Interesting Observations

Input Distribution of FAIRFACE age classes across the first time cluster of Branchy-AlexNet, SDNet, RANet and MSDNet

Demonstrate how timing side channels in ADNNs can leak private information

- Demonstrate how timing side channels in ADNNs can leak private information
- Show how an adversary might leverage such timing side channel leakage

- Demonstrate how timing side channels in ADNNs can leak private information
- Show how an adversary might leverage such timing side channel leakage
- Experimental validate our technique across six different ADNNs and four datasets

- Demonstrate how timing side channels in ADNNs can leak private information.
- Show how an adversary might leverage such timing side channel leakage.
- Experimental validate our technique across six different ADNNs and four datasets.
- Show how hyperparameter tuning such as exit threshold can result in trade offs between accuracy, efficiency and privacy.

- Demonstrate how timing side channels in ADNNs can leak private information.
- Show how an adversary might leverage such timing side channel leakage.
- Experimental validate our technique across six different ADNNs and four datasets.
- Show how hyperparameter tuning such as exit threshold can result in trade offs between accuracy, efficiency and privacy.

Thank You

ANY QUESTIONS?

Future Work

- Deliberate crafting of timing side channels
- Automatic testing and validation of ADNNs for timing side channels
- Online monitoring of ADNNs for timing side channels