You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks

Qiushi Li, Yan Zhang, Ju Ren, Qi Li, Yaoxue Zhang

Tsinghua University

NDSS SYMPOSIUM/2024

Internet Society

Presented by

Problem:

- Neural network models can leak the training datasets
 - Existing privacy protection methods such as homomorphic encryption and differential privacy have their limitations.

Solution:

- Trade-off between privacy and loss of model performance
 - Protect visual privacy of image data by shuffling

WS=2 WS=7 WS=Entire WS=Adaptive ACC.=83.8% ACC.=64.6% ACC.=1.93% ACC.=69.59%

VFE=96.39 VFE=118.44 VFE=131.20 VFE=116.51

VFE=94.27 VFE=107.62 VFE=132.91 VFE=110.98

Architecture:

- Using VFE to guide privacy-preserving image shuffle
- Improve the convergence speed of model training over the shuffled image data by ST-Adam Optimizer

$$\nabla_x I(x,y) = I(x+1,y) - I(x,y), \quad x \in \{0,1,\dots,N_1-1\}$$

$$\nabla_y I(x,y) = I(x,y+1) - I(x,y), \quad y \in \{0,1,\dots,N_2-1\}$$

$$VFE_R(R_I) = \sum_{x=x_0}^{x_0+w-1} \sum_{y=y_0}^{y_0+h-1} \left(\nabla_x I(x,y)^2 + \nabla_y I(x,y)^2 \right)$$

$$VFE(I) = \frac{F}{N_1 N_2} \sum^{R_I \in \boldsymbol{R_I}} VFE_R(R_I)$$

VFE:

0

Presented by
Internet
Society

Challenge of training on the mixed dataset:
models struggling to converge due to gradient oscillation

Presented by Internet Society

ST-Adam Optimizer:

The update rules of ST-Adam Optimizer

(1) calculates the gradient of the loss function

$$g_t = \nabla f(w_t)$$

(2) calculate the momentum by hyperparameter β

$$m_t = \beta \times m_{t-1} + (1 - \beta) \times g_t$$

(3) calculate the daptive learning rate by hyperparameter γ $v_t = \gamma \times v_{t-1} + (1-\gamma) \times g_t^2$

(4) update the parameters of models

$$w_{t+1} = w_t - \eta * \frac{m_t}{\sqrt{(v_t)} + \epsilon}$$

ST-Adam Optimizer:

Why ST-Adam Optimizer?

(1) First define

$$\Delta w_t = w_t - w^*, \quad \Delta f_t = f(w_t) - f(w^*)$$

(2) According to Jensen's inequality

$$\Delta f_t \le g_t^T \times \Delta w_t$$

(3) Substituting the update rule of ST-Adam

$$\Delta f_t \le (\frac{m_t}{\sqrt{v_t} + \epsilon})^T \times \Delta w_t$$

Presented by

Validation on ST-Adam Optimizer:

Presented by Internet Society

Defend Against Heuristic Attacks:

Original Images

Images by VIM

Shredder Recover Algorithm

Recovered by JigsawNet

Internet Society

Raw Data

Trained by Raw Data

Trained by FL

Trained by DP

Trained by VIM

Defend Against Membership Inference:

Performance:

<u> </u>															
	Model	MNIST				CIFAR-10				ImageNet-100 ⁵					
	Method	Plain	VIM	DP	FHE ⁴	InstaHide [24]	Plain	VIM	DP	FHE ⁴	InstaHide	Plain	VIM	DP	InstaHide
-	Privacy	×	\checkmark	\bigcirc^1	\checkmark	\bigcirc^7	×	\checkmark	\bigcirc^1	\checkmark	\bigcirc^7	×	\checkmark	\bigcirc^1	\bigcirc^7
	ViT-B [9]	99.87%	99.14%	_2	_4	9.97%	98.63%	92.35%	_2	_4	10.03%	74.54%	72.98%	_2	1.03%
	Swin-T [35]	98.72%	98.70%	_2	_4	10.16%	92.33%	85.73%	_2	_4	9.82%	84.80%	81.12%	_2	0.10%
	ResNet [18]	99.27%	98.81%	61.36% ³	_4	98.79%	97.23%	90.15%	62.74% ³	$87.84\%^{6}$	90.04%	90.34%	83.78%	$60.82\%^3$	31.08%
	ShuffleNet [52]	98.93%	97.19%	$58.91\%^3$	_4	96.27%	86.87%	84.07%	$52.06\%^3$	_4	84.97%	85.34%	83.64%	$48.75\%^{3}$	29.78%
	MobileNet [22]	97.21%	97.20%	$51.48\%^{3}$	_4	97.13%	81.37%	81.02%	59.77% ³	_4	75.53%	82.94%	81.38%	$48.57\%^{3}$	30.94%
	VGG [44]	99.51%	98.12%	69.34% ³	4	98.05%	82.64%	82.63%	53.89% ³	84.76% ⁶	82.57%	74.02%	73.88%	43.56% ³	1.38%

TABLE II: Accuracy of trained models with different datasets.

TABLE III: Throughput (images per second) of different methods on different datasets.

Method	Privacy	ShuffleNet [52]	VGG [44]	ResNet [18]	MobileNet [22]	ViT-B [9]	Swin-T [35]	_ /
Plain	×	1088.9	404.7	600.2	1070.8	322.2	472.3	- /
DP [10]	\bigcirc^1	212.3 [-80.5%]	66.1 [-83.7%]	187.8 [-68.7%]	92.1 [-91.4%]	_2	_2	
FL ³ [38]	O^1	291.8 [-73.2%]	385.2 [4.8%]	565.1 [5.8%]	1008.7 [-5.8%]	_4	_4	
$DP + FL^3$ [10, 38]	\bigcirc^1	10.9 [-99.0%]	2.0 [-99.5%]	7.4 [-98.8%]	12.8 [-98.8%]	_4	_4	\backslash
FHE ⁵ [39]	\checkmark	0.006[-99.9%]	0.0009 [-99.9%]	0.0005[-99.9%]	0.005 [-99.9%]	0.000074 [-99.9%]	0.00045 [-99.9%]	
InstaHide [24]	\bigcirc^6	1087.1 [-0.17%]	399.2 [-1.4%]	594.1 [-1.0%]	1062.3 [-7.9%]	315.8 [-2.0%]	458.3 [-3.0%]	
VIM	\checkmark	1080.3 [-0.8%]	401.9 [-0.6%]	595.4 [-0.8%]	1062.1 [-0.8%]	319.9 [-0.7%]	466.1 [-1.3%]	

Performance:

TABLE IV: Federated learning accuracy of ResNet50 on ImageNet via plain scheme and VIM scheme.

Model	Method	MNIST	CIFAR10
ResNet [18]	FL	99.28%	70.83%
	FL+VIM	94.39%	66.11%
VGG [44]	FL	99.48%	77.29%
	FL+VIM	97.25%	76.87%
MobileNet [22]	FL	99.23%	75.26%
	FL+VIM	97.44%	73.11%
ShuffleNet [52]	FL	99.20%	72.63%
	FL+VIM	97.33%	72.08%
Swin-T [35]	FL	95.47%	67.53%
	FL+VIM	93.71%	61.37%
ViT-B [9]	FL	92.29%	60.03%
	FL+VIM	87.23%	57.70%

TABLE V: Knowledge distillation [19] accuracy of ResNet50 on ImageNet-100 via different training schemes.

Model	Top-1	Top-3	Top-5	Top-10
TO -Resnet50	74.55%	88.42%	92.02%	95.23%
TV ¹ Resnet50	66.45%	82.67%	87.24%	91.78%
SO ² MobileNetv3	21.1%	44.0%	53.6%	62.4%
SV -MobileNetv3	18.9%	43.1%	53.4%	62.4%

TABLE VI: Experimental results on VOC dataset.

Model	Method	Precision	Recall	mAP@50
YOLO v5 [26]	Plain	0.601	0.534	0.562
	VIM	0.602	0.415	0.441
SSD [34]	Plain	0.631	0.594	0.504
	VIM	0.556	0.418	0.372
EfficientDet [46]	Plain	0.817	0.660	0.765
	VIM	0.735	0.419	0.505

Presented by

Finternet Society

Performance:

TABLE IV: Federated learning accuracy of ResNet50 on ImageNet via plain scheme and VIM scheme.

Model	Method	MNIST	CIFAR10
ResNet [18]	FL	99.28%	70.83%
	FL+VIM	94.39%	66.11%
VGG [44]	FL	99.48%	77.29%
	FL+VIM	97.25%	76.87%
MobileNet [22]	FL	99.23%	75.26%
	FL+VIM	97.44%	73.11%
ShuffleNet [52]	FL	99.20%	72.63%
	FL+VIM	97.33%	72.08%
Swin-T [35]	FL	95.47%	67.53%
	FL+VIM	93.71%	61.37%
ViT-B [9]	FL	92.29%	60.03%
	FL+VIM	87.23%	57.70%

TABLE V: Knowledge distillation [19] accuracy of ResNet50 on ImageNet-100 via different training schemes.

Model	Top-1	Top-3	Top-5	Top-10
TO -Resnet50	74.55%	88.42%	92.02%	95.23%
TV ¹ Resnet50	66.45%	82.67%	87.24%	91.78%
SO ² MobileNetv3	21.1%	44.0%	53.6%	62.4%
SV -MobileNetv3	18.9%	43.1%	53.4%	62.4%

TABLE VI: Experimental results on VOC dataset.

Model	Method	Precision	Recall	mAP@50
YOLO v5 [26]	Plain	0.601	0.534	0.562
	VIM	0.602	0.415	0.441
SSD [34]	Plain	0.631	0.594	0.504
	VIM	0.556	0.418	0.372
EfficientDet [46]	Plain	0.817	0.660	0.765
	VIM	0.735	0.419	0.505

Presented by

Finternet Society