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AutoAdapt — Experiments

Reported Setup:

= CIFAR-10 .
u ResNet-18 =
= 20client u

= 2560 Samples per client

Conducted Experiments:

m 3 models n
m 3 datasets n

= 3 packdoors

Poison Data Rate 0.1
Poison Model Rate 0.45

Semantic Backdoor

4 defenses

Different non-lID scenarios
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AutoAdapt — Experiments
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AutoAdapt — Experiments

Runtime
- Faster FL Defense Testing

- Benefit for all Researchers

&

&

No Adaption | @ = 0.9 |a = [0.1,...,0.9] A;";‘;ﬁ‘:f]st A‘it:s:cahpt
10.87s 25.46s 229.11s 20.50s 14.62s
+0% +134 % + 2007 % +88 % +34 %

Saved Time +0% -91% -94 %
Speed-Up x0 11x faster 15x faster
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@ Replace fixed a with dynamic y in Augmented Lagrangian
@ Implicit handling of multiple inequality (range) constraints
- Metric adaption on a model-wise and layer-wise level

- Successful adaption within 1-3 training epochs

— 11-15x faster FL defense testing

AutoAdapt: A useful tool to evaluate the robustness of FL poisoning defenses
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