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𝐿𝑜𝑠𝑠𝐴𝑢𝑡𝑜𝐴𝑑𝑎𝑝𝑡 =
1

2𝛽
 σ𝑗=1

𝑚 ( max 0, 𝛾𝑗 + 𝛽𝐿𝑜𝑠𝑠𝑗
2
− 𝛾𝑗

2)

𝛾𝑗 = ൝
𝛾𝑗 + 𝛽 𝐿𝑜𝑠𝑠𝑗 , 𝑖𝑓𝐿𝑜𝑠𝑠𝑗 ≥ 0

0, 𝑖𝑓𝐿𝑜𝑠𝑠𝑗 < 0
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Valid Inequality (Range) Constraints

𝐶𝑂𝑆𝑚𝑖𝑛 ≤ 𝐶𝑂𝑆∗ ≤ 𝐶𝑂𝑆𝑚𝑎𝑥



▪ Poison Data Rate 0.1

▪ Poison Model Rate 0.45

▪ Semantic Backdoor

Reported Setup:

▪ CIFAR-10

▪ ResNet-18

▪ 20 client 

▪ 2560 Samples per client

Conducted Experiments:

▪ 3 models

▪ 3 datasets

▪ 3 backdoors

▪ 4 defenses

▪ Different non-IID scenarios
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AutoAdapt
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- 1 Metric / Model

- 2 Constraints (1 Range)
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AutoAdapt
Model-Wise Metrics

- 1 Metric / Model

- 2 Constraints (1 Range)

Layer-Wise Metrics (Last Layer)

- 14 Metrics / Model

-28 Constraints (14 Ranges)

AutoAdapt

AutoAdapt – Experiments
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Adaption Progression

- Adaption within 1-3 Epochs

- Alignment to one range 

threshold

Model Metric Constraint Losses

Metric Value

Upper Range Constraint

Lower Range Constraint

AutoAdapt – Experiments
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Start of Constraint Training



Runtime

- Faster FL Defense Testing

- Benefit for all Researchers

No Adaption 𝛼 = 0.9 𝛼 = [0.1, … , 0.9]
AutoAdapt

3 epochs
AutoAdapt

1 epoch

10.87s 25.46s 229.11s 20.50s 14.62s

+ 0 % + 134 % + 2007 % + 88 % + 34 %

Saved Time + 0 % - 91 % - 94 %

Speed-Up x 0 11x faster 15x faster

AutoAdapt – Experiments
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Replace fixed 𝛼 with dynamic 𝛾 in Augmented Lagrangian 

Implicit handling of multiple inequality (range) constraints

Conclusion
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→ Successful adaption within 1-3 training epochs

→ 11-15x faster FL defense testing
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→ Metric adaption on a model-wise and layer-wise level

→ Successful adaption within 1-3 training epochs

→ 11-15x faster FL defense testing

AutoAdapt: A useful tool to evaluate the robustness of FL poisoning defenses
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Torsten Krauß, Jan König, Alexandra Dmitrienko, Christian Kanzow
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