

Exemplary visualization of a model with 2 parameters

Exemplary visualization of a model with 2 parameters

Dimension reduction of a model to one metric value

Exemplary visualization of a model with 2 parameters

Dimension reduction of a model to one metric value

Exemplary visualization of a model with 2 parameters

Dimension reduction of a model to one metric value

 $Loss = Loss_{data} + Loss_{adaption}$

Exemplary visualization of a model with 2 parameters

Dimension reduction of a model to one metric value

 $Loss = Loss_{data} + Loss_{adaption}$

→ Our work improves the current method for adversarial adaption

Exemplary visualization of a model with 2 parameters

Dimension reduction of a model to one metric value

 $Loss = Loss_{data} + Loss_{adaption}$

→ Our work improves the current method for adversarial adaption

- 1 Fixed α during training
- 2 Manual adjustment of α via trial and error

- 1 Fixed α during training
- 2 Manual adjustment of α via trial and error $\alpha = [0.1, ..., 0.9]$

- 1 Fixed α during training
- 2 Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$

- (1) Fixed α during training
- 2 Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$

- 1 Fixed α during training
- 2 Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$

- 1 Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

- 1 Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

- 1 Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

- 1 Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

- (1) Fixed α during training
- \bigcirc Manual adjustment of α via trial and error
- (3) III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

- 1 Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

- \bigcirc Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

Augmented Lagrangian Method
for constraint optimization problems
&
adapted for multiple range constraints

- 1 Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

- (1) Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$\frac{Loss_{AutoAdapt}}{2\beta} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

- (1) Fixed α during training
- (2) Manual adjustment of α via trial and error
- 3 III-Conditioning of $Loss_{data}$ and $Loss_{adaption}$
- 4 Handling of multiple inequality (range) constraints undefined

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption} \longrightarrow$$

(1) Fixed α during training

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

1 Fixed α during training

- γ_j individual for each $Loss_j$
- γ_i automatically adjusted during training

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption} \longrightarrow$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

(1) Fixed α during training

 γ_i automatically adjusted during training

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

 γ_i individual for each $Loss_i$

 γ_i automatically adjusted during training

- ig(2ig) Manual adjustment of lpha via trial and error igvee igvee
- \bigcirc Ill-Conditioning of $Loss_{data}$ and $Loss_{adaption}$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$
 ————

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Fixed α during training

- γ_i individual for each $Loss_i$
- γ_i automatically adjusted during training

Manual adjustment of α via trial and error (2)

 β is automatically initialized

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

Handling of multiple inequality (range) constraints undefined

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

Modeling \leq constraints: $Loss_i \leq 0$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_i = 7$$
 — Unsatisfied Constraint

Handling of multiple inequality (range) constraints undefined

Modeling \leq constraints: $Loss_i \leq 0$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption} \longrightarrow$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 Satisfied Constraint

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 — Satisfied Constraint

Handling of multiple inequality

(range) constraints undefined

Modeling \leq constraints: $Loss_i \leq 0$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$
 ————

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 — Satisfied Constraint

Handling of multiple inequality

(range) constraints undefined

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$\frac{Loss_{AutoAdapt}}{2\beta} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 — Satisfied Constraint

Handling of multiple inequality

(range) constraints undefined

Modeling \leq constraints: $Loss_i \leq 0$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$\frac{Loss_{AutoAdapt}}{Loss_{j=1}} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$if Loss_j < 0$$

$$Loss_i = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 — Satisfied Constraint

Handling of multiple inequality

(range) constraints undefined

Modeling \leq constraints: $Loss_i \leq 0$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption} \longrightarrow$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta Loss_j) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 — Satisfied Constraint

Handling of multiple inequality

(range) constraints undefined

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta - 5) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint

$$Loss_j = -5$$
 — Satisfied Constraint

Handling of multiple inequality

(range) constraints undefined

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$
 —

Handling of multiple inequality

(range) constraints undefined

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (\left| \max(0, \gamma_j + \beta - 5) \right|^2 - \gamma_j^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

$$Loss_j = 7$$
 —— Unsatisfied Constraint $Loss_j = -5$ —— Satisfied Constraint $\gamma_j = 6$ $\beta = 1$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (|\max(0, 6+1-5)|^2 - 6^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

Handling of multiple inequality

(range) constraints undefined

$$Loss_j = 7$$
 —— Unsatisfied Constraint $Loss_j = -5$ —— Satisfied Constraint $\gamma_j = 6$ $\beta = 1$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$
 —

Handling of multiple inequality

(range) constraints undefined

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (|\max(0, 6+1-5)|^2 - 6^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

$$Loss_j = 7$$
 —— Unsatisfied Constraint $Loss_j = -5$ —— Satisfied Constraint $\gamma_j = 6$ $\beta = 1$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = \frac{1}{2\beta} \sum_{j=1}^{m} (|\max(0, 0 + 1 - 5)|^2 - 0^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

Handling of multiple inequality

(range) constraints undefined

$$Loss_j = 7$$
 —— Unsatisfied Constraint $Loss_j = -5$ —— Satisfied Constraint $\gamma_j = 6$ $\beta = 1$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption} -$$

Handling of multiple inequality

(range) constraints undefined

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$\frac{Loss_{AutoAdapt}}{2\beta} = \frac{1}{2\beta} \sum_{j=1}^{m} (|\mathbf{0}|^2 - \mathbf{0}^2)$$

Iterative update of γ_i for each $Loss_i$ before optimizer step:

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

$$Loss_j = 7$$
 —— Unsatisfied Constraint $Loss_j = -5$ —— Satisfied Constraint $\gamma_j = 6$ $\beta = 1$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption} \longrightarrow$$

$$Loss = Loss_{data} + Loss_{AutoAdapt}$$

$$Loss_{AutoAdapt} = 0$$

Iterative update of γ_j for each $Loss_j$ before optimizer step:

(range) constraints undefined

Modeling \leq constraints: $Loss_i \leq 0$

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

$$Loss_j = 7$$
 —— Unsatisfied Constraint $Loss_j = -5$ —— Satisfied Constraint $\gamma_j = 6$ $\beta = 1$

$$Loss = \alpha \cdot Loss_{data} + (1 - \alpha) \cdot Loss_{adaption}$$

$$Loss = Loss_{data} + 0$$

$$Loss_{AutoAdapt} = 0$$

Handling of multiple inequality

Iterative update of γ_j for each $Loss_j$ before optimizer step:

(range) constraints undefined

$$\gamma_{j} = \begin{cases} \gamma_{j} + \beta \ Loss_{j}, & if Loss_{j} \geq 0 \\ 0, & if Loss_{j} < 0 \end{cases}$$

Modeling
$$\leq$$
 constraints: $Loss_i \leq 0$

$$Loss_j = 7$$
 Unsatisfied Constraint

 $Loss_j = -5$ Satisfied Constraint

 $\gamma_j = 6$
 $\beta = 1$

Classic Adaption Workflow

Reported Setup:

- CIFAR-10
- ResNet-18
- 20 client
- 2560 Samples per client

- Poison Data Rate 0.1
- Poison Model Rate 0.45
- Semantic Backdoor

Conducted Experiments:

- 3 models
- 3 datasets
- 3 backdoors

- 4 defenses
- Different non-IID scenarios

Model-Wise Metrics

- 1 Metric / Model

- 2 Constraints (1 Range)

Model-Wise Metrics

- 1 Metric / Model

- 2 Constraints (1 Range)

Layer-Wise Metrics (Last Layer)

- 14 Metrics / Model

-28 Constraints (14 Ranges)

Adaption Progression

- Adaption within 1-3 Epochs

- Alignment to one range threshold

Runtime

- Faster FL Defense Testing
- Benefit for all Researchers

No Adaption	$\alpha = 0.9$	$\alpha = [0.1,, 0.9]$	AutoAdapt 3 epochs	AutoAdapt 1 epoch
10.87s	25.46s	229.11s	20.50 s	14.62s
+ 0 %	+ 134 %	+ 2007 %	+ 88 %	+ 34 %
Saved Time		+ 0 %	- 91 %	- 94 %
Speed-Up		x 0	11x faster	15x faster

Conclusion

- (1) Replace fixed α with dynamic γ in Augmented Lagrangian
- (2) Implicit handling of multiple inequality (range) constraints

Conclusion

- (1) Replace fixed α with dynamic γ in Augmented Lagrangian
- (2) Implicit handling of multiple inequality (range) constraints
- → Metric adaption on a model-wise and layer-wise level
- → Successful adaption within 1-3 training epochs
- → 11-15x faster FL defense testing

Conclusion

- (1) Replace fixed α with dynamic γ in Augmented Lagrangian
- (2) Implicit handling of multiple inequality (range) constraints
- → Metric adaption on a model-wise and layer-wise level
- → Successful adaption within 1-3 training epochs
- → 11-15x faster FL defense testing

AutoAdapt: A useful tool to evaluate the robustness of FL poisoning defenses

Thank you!!11!!1

Any Questions?

Torsten Krauß, Jan König, Alexandra Dmitrienko, Christian Kanzow

University of Würzburg

Thank you!!11!!1

Any Questions?

Torsten Krauß, Jan König, Alexandra Dmitrienko, Christian Kanzow

University of Würzburg

