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Does the sensitive training set contain a target record?
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Confidentiality 
violation

Stepping stone for more 
powerful attack

Auditing 
purpose

We need effective defense against MIAs!
https://ico.org.uk/media/about-the-ico/consultations/2617219/guidance-on-the-ai-auditing-framework-draft-for-consultation.pdf
Carlini et al., Extracting Training Data from Diffusion Models, USENIX’23
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Poor privacy-utility trade off or requiring additional data 

DMP
(AAAI’21)

MMD
(CODASPY’21)

PATE
(ICLR’17)

high accuracy

strong 
privacy

MemGuard
(CCS’19)

AdvReg
(CCS’18)

DPSGD
(CCS’16)

DMP
(AAAI’21)

SELENA
(USENIX’22)

Ideal
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HAMP

High Accuracy and Membership Privacy without additional data
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high accuracy

strong 
privacy

A new way to combine soft label training, training regularization and 
output modification for privacy-preserving training!

HAMP
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Adversary
• Knowledge: 

• Black-box adversary.
• Half members and non-members.
• Full defense knowledge.

• Goal: Membership inference

Defender

• Knowledge: 
• The private dataset only.

• Goal: Model with high accuracy & 
membership privacy
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Scaled-logit loss Prediction entropy Adv robustness …

Exploit ML model’s overconfident prediction on training samples

Overconfident 
Prediction 

manifest as
• High logit-scaled loss;
• Low prediction entropy;
• High robustnesss to adv perturbations; 
• …

Diverse strategies

Common exploitation
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Example: Overconfident prediction via 
logit-scaled loss
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Carlini et al., Membership Inference Attacks From First Principles, S&P’22

Due to overly high prediction 
confidence

Member samples with 
high scaled loss



Defense principle
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Mitigating ML model’s overconfident prediction on training 
samples without jeopardizing model accuracy

MIAs exploit ML model’s overconfident prediction on 
training samples
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Dog Cat
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0.95 0.05

Dog Cat
0.65 0.35

Training

Testing

High-confidence
output

Low-confidence
output

Distinguishable
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Training-time defense Testing-time defense

Produce high-utility models with 
strong membership privacy

Gain higher privacy without 
degrading accuracy
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High-entropy soft labels Entropy-based regularization

Dog Cat
1 0

Dog Cat
0.7 0.3

Original hard 
label

High-entropy 
soft label

Explicitly enforce the model to 
make less confident prediction

Regularize the prediction 
confidence level

Penalize low-entropy predictions
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Output vector

Prediction label
(e.g., top-1 is dog)

Confidence score
(e.g., top-1 with 90% confidence)

Unchanged 
(preserve accuracy)

Modified
(improve privacy) 

q Modify all output vectors à low confidence outputs.
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q Modify all output vectors à low confidence outputs.

q How to obtain low confidence outputs? 

§ Utilize random samples as (highly probable) non-members.

Simple
(optimization-free)

Effective
(improve membership privacy)
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Dog Cat

0.85 0.15

Dog Cat

0.45 0.55

Dog Cat

0.55 0.45

random sample

member sample

Keep prediction label
(top-1 à dog)

Keep prediction scores
(0.45, 0.55) Low confidence output
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5 datasets
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Texas100
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CIFAR100

9 attacks

NN-based
Loss-based
Entropy-based
Modified-entropy-based
Confidence-based
Likelihood-ratio attack (LiRA)

Correctness-based
Boundary-based
Augmentation-based

HAMP
configuration

𝜶 for high-entropy soft 
labels

𝜸 for regularization 
strength

7 defenses

AdvReg (CCS’18)
MemGuard (CCS’19)
DMP (AAAI’21)
SELENA (USENIX’22)
Early stopping (USENIX’21)
Label Smoothing (CVPR’16)
DPSGD (CCS’16)

2 metrics TPR @ 0.1% FPR
TNR @ 0.1% FNR

https://github.com/DependableSystemsLab/MIA_defense_HAMPArtifact

Refer to the paper for details

https://github.com/DependableSystemsLab/MIA_defense_HAMP
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(Label smoothing) 

Strong privacy

High Accuracy

(𝜀 = 4)



DPSGD: Strong privacy, but low accuracy
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(Label smoothing) 

MemGuard: High accuracy, 
but poor privacy

(𝜀 = 4)
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(Label smoothing) 

HAMP
Strong privacy: attack TPR ↓ 94%

High accuracy: 0.46% accuracy drop

(𝜀 = 4)
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How to mitigate membership inference attacks with strong privacy 
protection and low accuracy drop?

Mitigating ML model’s overconfident prediction on training samples 
without jeopardizing model accuracy.

HAMP: A new way to combine soft label training, training regularization 
and output modification for privacy-preserving training!

Code zitaoc@ece.ubc.caPaper
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Ablation study
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Full defense has the best 
privacy protection with 
competitive accuracy



Comparison with DPSGD
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DPSGD with different clipping 
norm and noise intensity values.

HAMP


