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Human Activity Recognition (HAR)

O Vision-based HAR is often linked to privacy concerns.
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Anti-Facial Recognition (AFR)
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A new paradigm: privacy-preserving by birth




How to achieve AFR inside a basic camera module?
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How to achieve AFR inside a basic camera module?
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How to achieve AFR inside a basic camera module?
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How to achieve AFR inside a basic camera module?
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Basic Idea: achieve AFR by adjusting ISP parameters
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Image Signal Processing

O Selected two ISP functions
» Color correction
» Gamma correction
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Image Signal Processing

O Selected two ISP functions

> Color correction — g 3x3 matrix }
» Gamma correction
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Image Signal Processing

O Selected two ISP functions

> Color correction — g 3x3 matrix }
» Gamma correction — y-values
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ISP Parameter Adjustment

Magnitude of parameter adjustment

Original image
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ISP Parameter Adjustment

o Low Magnitude of parameter adjustment High
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Challenges

utility privacy
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Challenges

Utility of machine perception
How to make HAR algorithms function properly?

utility privacy
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Challenges

Utility of machine perception
How to make HAR algorithms function properly?

Utility of human perception

How to allow human viewers to see images normally?

utility privacy
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C1: Optimization Problem

O Three-player game on privacy and utility
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C1: Optimization Problem

O Three-player game on privacy and utility
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C1: Optimization Problem

O Three-player game on privacy and utility
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C1: Optimization Problem

O Three-player game on privacy and utility
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C1: Optimization Problem

O Three-player game on privacy and utility
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C1: Optimization Problem

O Three-player game on privacy and utility
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C1: Optimization Problem

O Three-player game on privacy and utility
O Alternating optimization between Protector and Attacker
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C1: Adversarial Learning Framework

Step 1: Update Protector
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C1: Adversarial Learning Framework

Step 2: Update Attacker
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C1: Adversarial Learning Framework

Step 2: Update Attacker

Camera
% Facial
X — ar— C(x) ¢ Recognition L.,
Original % Protected e B l\*
Image % Image Eve 08P
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Protector learns robustness and transferability from an adaptive Attacker.
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C2: Capacity Limitation

O Adjustments for AFR decrease the image quality unavoidably.
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C2: Capacity Limitation

O Adjustments for AFR decrease the image quality unavoidably.
O Limited capacity: only 41 adjustable parameters

> 9in color correction 41 =~ 1/1,000,000 of a DNN
» 32 In gamma correction
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C2: Capacity Limitation

O Adjustments for AFR decrease the image quality unavoidably.
O Limited capacity: only 41 adjustable parameters

> 9in color correction 41 =~ 1/1,000,000 of a DNN
» 32 In gamma correction
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C2: Image Enhancer
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C2: Image Enhancer
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R facial
o ' o information
U-Net 17—{ MAE Loss] . i
train X 4
Captured Image Image Enhancer | reference Enhanced Image

N

ER ]
S NDSS (¥ *
"‘ /’89“5\

6 N



C2: Image Enhancer
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C2: Image Enhancer

&

U-Net - -{ MAE Loss]
train S
Captured Image Image Enhancer reference Enhanced Image
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restore non-facial regions

H(1 —5) O |R(C(x))|

obfuscate facial regions

Binary Mask Multiple-task Training
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System Design

O CamPro system
» camera module with ISP parameter adjustments
> image enhancer to improve the image quality

HAR
Algorithms
AFR | Image | Human
Camera Enhancer 2 | Viewers
Real-world S e
Scene Captured Image Enhanced Image

D
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Evaluation

O E1: Privacy protection evaluation
O E2: Utility maintenance evaluation

O E3: Real-world evaluation
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El: Black-box AFR Performance

10 models

2 datasets 2 classifiers

Facial Recognition Model (Feature Extractor) [

I 1

{ Dataset ; Image Type : Classifier i : Average
. : : i :_FaceNetO Arcl8'  Arc50% Arcl523 Magl8* Mag50° Magl00® Adal8’ AdaS0® Adal00° [

1 } L L L L L L LI LI L1 L LI LI LILILLILILILILLILILILILILILILILILI LI ILILII LI LI L LI LI L L L Ll L1 L L1 L1 L1 L1 1L

. : Raw i NGdI‘GSI : 67.1% T77.7%  82.9% 89.5% 77.5% 90.1% 90.6%  86.6%  90.2% 90.9% 84.3%
:CelebA . Captured | Nearest : 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.4% 1.2% 1.5% 0.3%
1 ! Enhanced : Nearest : 0.2% 0.1% 0.4% 0.4% 0.1% 0.7% 0.8% 0.8% 1.3% 1.6% 0.6%
1 i

: i Raw : Linear i 64.7%  70.1%  69.1% 86.6% 75.5% 89.5% 90.1%  82.5%  89.1% 90.2% 80.7 %
:CelebA : Captured : Linear 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.2% 0.6% 0.9% 0.2%
. i Enhanced : Linear | 0.1% 0.1% 0.2% 0.2% 0.1% 0.5% 0.5% 0.4% 0.7% 1.0% 0.4%
1 T

| . Raw | Nearest : 93.9% 92.7% 97.9% 99.2% 93.0% 99.3% 99.3%  98.7%  99.3% 99.4% 97.3%
1 LFW : Captured | Nearest . 0.1% 0.1% 0.6% 0.3% 0.1% 0.3% 0.4% 1.1% 1.7% 1.6% 0.6%
: 1 Enhanced | Nearest : 0.8% 0.6% 2.3% 1.4% 0.8% 2.6% 2.6% 3.3% 4.8% 5.5% 2.5%
1 1

: I Raw l Linear | 922%  92.6%  97.8% 98.7% 92.0% 99.2% 9.2%  97.6%  99.1% 99.2% 96.8 %
| LFW | Captured | Linear | 0.2% 0.1% 0.6% 0.3% 0.1% 0.2% 0.3% 0.7% 1.2% 1.2% 0.5%
- I Enhanced I ]:12§¢1._r__: 0.8% 0.7% 2.4% 1.0% 0.7% 1.9% 2.0% 2.0% 3.0% 3.7% 1.8%

(_’ FaceNet-InceptionResNetV I ;
> MagFace-1ResNet50:;
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© MagFace-IResNet100;

I ArcFace-IResNet18:

7 AdaFace-IResNet18:

2 ArcFace-IResNetSES0;
8 AdaFace-IResNetS0:

3 ArcFace-IResNet152:

4 MagFace-IResNet18;
? AdaFace-IResNet100.
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El: Black-box AFR Performance

2 datasets 2 classifiers 10 models

v A — I — :

I
IDd'[dSE:t ' Tmage Type i Classifier! i Facial Recognition Model (Feature Extractor) i Average
: ! i L FaceNet” Arcl8! ArcS0° Arcl52) Magls! MagS0' Magloo® Adals? Adaso’  Adaloo” |

i | Raw i Nedrest : 67.1% 77.7%  82.9% 89.5% 77.5% 90.1% 90.6% 86.6%  90.2% 90.9% 84.3%
I CelebA | Captured | Nearest : 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.4% 1.2% 1.5% 0.3%
i : Enhanced | Nearest ! 0.2% 0.1% 0.4% 0.4% 0.1% 0.7% 0.8% 0.8% 1.3% 1.6% 0.6 %
i i Raw ; Linear : 64.7%  70.1%  69.1% 86.6% 75.5% 89.5% 90.1%  82.5%  89.1% 90.2% 80.7 %
: CelebA : Captured : Linear : 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.2% 0.6% 0.9% 0.2%
: : Enhanced : Linear : 0.1% 0.1% 0.2% 0.2% 0.1% 0.5% 0.5% 0.4% 0.7% 1.0% 0.4%
i i Raw : Nearest : 93.9% 92.7% 97.9% 99.2% 93.0% 99.3% 99.3% 98.7% 99.3% 99.4% 97.3%
1 LFW 1 Captured | Nearest . 0.1% 0.1% 0.6% 0.3% 0.1% 0.3% 0.4% 1.1% 1.7% 1.6% 0.6%
: ! Enhanced | Nearest : 0.8% 0.6% 2.3% 1.4% 0.8% 2.6% 2.6% 3.3% 4.8% 5.5% 2.5%
I

! i Raw l Linear 1 922% 92.6% 97.8%  98.7%  92.0%  99.2% 99.2%  97.6%  99.1%  99.2%  96.8%
: LFW : Captured | Linear : 0.2% 0.1% 0.6% 0.3% 0.1% 0.2% 0.3% 0.7% 1.2% 1.2% 0.5%
- I Enhanced | ]:12§¢1._r__: 0.8% 0.7% 2.4% 1.0% 0.7% 1.9% 2.0% 2.0% 3.0% 3.7% 1.8%

U FaceNet-InceptionResNetV1: ! ArcFace-IResNetl8: 2 ArcFace-IResNetSES0;
> MagFace-1ResNet50:; 6 MagFace-IResNet100; 7 AdaFace-IResNet18:

: 3 ArcFace-IResNet152;  * MagFace-IResNet18;
8 AdaFace-IResNetS0: ? AdaFace-IResNet100.
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El: Black-box AFR Performance

2 datasets 2 classifiers 10 models

v A — I — :

- I X I Facial Recognition Model (Feature Extractor I
| Dataset i Image Type : Classifier | ( ) : Average
i LFaceNetO Arcl8'  Arc50% Arcl523 Magl8* Mag50° Magl00® Adal8’ AdaS0® Adal00° [
Raw ' NGdI‘GSI 67.1% T7.7% 82.9% 89.5% 77.5% 90.1% 90.6% 86.6% 90.2% 90.9% 84.3%
Captured | Nearest 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.4% 1.2% 1.5% 0.3%
Enhanced : Nearest 0.2% 0.1% 0.4% 0.4% 0.1% 0.7% 0.8% 0.8% 1.3% 1.6% 0.6%
Raw : Linear 64.7% 70.1% 69.1% 86.6% 75.5% 89.5% 90.1% 82.5% 89.1% 90.2% 80.7 %
Captured : Linear 0.0% 0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.2% 0.6% 0.9% 0.2%
Enhanced 1 Linear 0.1% 0.1% 0.2% 0.2% 0.1% 0.5% 0.5% 0.4% 0.7% 1.0% 0.4%
1
Raw : Nearest 93.9% 92.7% 97.9% 99.2% 93.0% 99.3% 99.3% 98.7% 99.3% 99.4% 97.3%
Captured | Nearest 0.1% 0.1% 0.6% 0.3% 0.1% 0.3% 0.4% 1.1% 1.7% 1.6% 0.6%
Enhanced ' Nearest 0.8% 0.6% 2.3% 1.4% 0.8% 2.6% 2.6% 3.3% 4.8% 5.5% 2.5%
Raw l Linear 922%  92.6% 97.8%  98.7%  92.0% = 99.2% 99.2%  97.6%  99.1%  992%  96.8%
Captured | Linear 0.2% 0.1% 0.6% 0.3% 0.1% 0.2% 0.3% 0.7% 1.2% 1.2% 0.5%
Enhanced | Linear 0.8% 0.7% 2.4% 1.0% 0.7% 1.9% 2.0% 2.0% 3.0% 3.7% 1.8%

I ArcFace-IResNet18; 2 ArcFace-IResNetSES0;  * ArcFace-IResNet152;  * MagFace-IResNet18;
© MagFace-IResNet100; 7 AdaFace-IResNetl8;  ® AdaFace-IResNet50;  ? AdaFace-IResNet100.

(_’ FaceNet-InceptionResNetV I ;
> MagFace-1ResNet50:;
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E1l: White-box Adaptive Attack

m' T . |mage

2 training modes '::::::::l;l:n:e:u:llgg:::::::::::T:r?l:n::F:l?:n}:S:C:l?gC:h::::i {Restoration | — restoration
2 training losses «<—— Softmax  ArcFace ¢ Softmax  ArcFace ! i___________; with U-Net
FaceNet'!  12.0% 0.0% 2.3% 0.0% 2.1%

Arcl8® 1 10.1% 15.4% 6.2% 47% 2.1%

ArcS0" 1 19.5% 0.0% 4.1% 10.7% 47%

Arcl52" | 3.7% 0.0% 12.6% 9.3% 3.9%

Magl8* | 14.5% 18.7% 7.1% 5.7% 2.1%

10 models ~—,/ ~so* L 15.6% 0.0% 8.0% 0.0% 6.3%

Mag100*! 6.9% 0.0% 5.3% 0.0% 7.5%
Adal8” | 5.4% 11.8% 3.0% 5.3% 5.4%
IAdaSO® | 18.9% 10.1% 5.8% 13.2% 8.3%
{Adal00" | 5.0% 10.9% 2.1% 8.5 10.2%
Average 11.2% 6.7% 5.7% 5.7% 5.3%

I C\\j 43
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E1l: White-box Adaptive Attack

m' T . |mage

2 training modes '::::::::l;l:n:e:u:u;?:::::::::::T:r?l:n::F:l?:n}:S:C:l?gC:h::::i {Restoration | — restoration
2 training losses «<—— Softmax  ArcFace ¢ Softmax  ArcFace ! i___________; with U-Net
FaceNet'!  12.0% 0.0% 2.3% 0.0% 2.1%

Arcl8® 1 10.1% 15.4% 6.2% 47% 2.1%

IArcS0" I 19.5% 0.0% 4.1% 10.7% 47%

Arcl52" | 3.7% 0.0% 12.6% 9.3% 3.9%

Magl8* | 14.5% 18.7% 7.1% 5.7% 2.1%

10 models ~—,/ ~so* L 15.6% 0.0% 8.0% 0.0% 6.3%

Mag100*! 6.9% 0.0% 5.3% 0.0% 7.5%
Adal8” | 5.4% 11.8% 3.0% 5.3% 5.4%
IAdaSO® | 18.9% 10.1% 5.8% 13.2% 8.3%
{Adal00" | 5.0% 10.9% 2.1% 8.5 10.2%
Average 11.2% 6.7% 5.7% 5.7% 5.3%

CamPro is, to some extent, resistant to adaptive attacks.
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E2: Quantitative Results

O Person detection performance

Raw Images 0 578  0.833 0.625 0.840 0.739 0.786

2 baseline ,\,L‘&&'iiééaﬁ'ﬁaﬁ'- 0284  0.517 0.271 0.722  0.444 0.550
methods  IDefocused 1 0.395  0.655 0.399 0.780  0.565 0.655
CamPro 0475  0.742 0.496 0.796  0.650 0.716
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E2: Quantitative Results

O Person detection performance

2 baseline  [T.ow-Resolution ' I {eXe [SITEHH AP of person detection,

T | o
methods | Defocused the baselines (51% and 32%).
CamPro

O Image quality

Treat raw images as ground truth

WA
Image Type ~ {RMSE | PSNR + SSIM MS-SSIM 1}
Captured 0.299 10.8 dB 0.437 0.195
Enhanced 0.093 21.5 dB 0.749 0.761

46




E2: Qualitative Results

* Raw images

 Captured images

* Enhanced images
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E2: Generalization Ability

O Generalized to pose estimation and image captioning

(d) “Two people playing (e) “A man and a (f) “A group of men
a video game in a living woman sitting at a table standing next to each
room.” with food.” other.”

48
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E1l & E2: Privacy-Utility Tradeoff Analysis

O
0.55 -
0.50 -
o
< 0.45 -
2>
'4:3) 0.40 -~ ® Raw
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0.30 - m Optimal
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E1l & E2: Privacy-Utility Tradeoff Analysis

@
.k
0.55 n ‘*_.——""—
7
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—& - CamPro
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Utility (AP)

0.55 -

o o o

= NN Ul

o Ul o
| | ]

E1l & E2: Privacy-Utility Tradeoff Analysis
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Low-Res.
Defocused
CamPro
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E3: Real-world Evaluation

O A prototype camera module (Sensor: IMX415 + ISP: RV1126)

Fixture

52




E3: Real-world Evaluation

O A prototype camera module (Sensor: IMX415 + ISP: RV1126)
O Real-world captured images are close to simulation results.

_30dB
PSNR

Simulated image

Real captured image
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E3: Real-world Evaluation

O Due to shooting noises, real-world results are better on
privacy and worse on utility than simulation ones.
> Accuracy on LFW: 95.9% (Raw) = 0.13% (Cap.) / 0.28% (Enh.)
> AP of person detection = 0.648
» RMSE =0.129; PSNR =17.9; SSIM =0.622

54
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E3: Deployment on Android

O Android camera subsystem

parameters
> ColorSpaceTransform |
I
» TonemapCurve §s§
2
Tested Android Smartphones
Device Model oS Android version
Google Pixel stock Android 10
Samsung S20 FE One UI 3.1 11
Huawei Nova 4 EMUI 10.0.0 10
OPPO Find X5 Pro ColorOS 13.1 13
iQOO Neo5 SE OriginOS 3 13
iQOO Neo6 SE OriginOS 3 13
Redmi K30S Ultra MIUI 14.0.5 12
MEIZU 16th Plus Flyme 8.1.8.0A 8
n S 55
SNDss (v)

SYMPOSIUM/2024



Conclusion

O Propose a new paradigm, privacy-preserving by birth
O Optimize ISP parameters to achieve anti-facial recognition

O Generalized to various facial recognition algorithms and even

resistant to white-box adaptive attacks
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