CamPro: Camera-based Anti-Facial Recognition

Wenjun Zhu, Yuan Sun, Jiani Liu, Yushi Cheng, Xiaoyu Ji, Wenyuan Xu USSLAB, Zhejiang University

Human Activity Recognition (HAR)

Human Activity Recognition (HAR)

□ Vision-based HAR is often linked to privacy concerns.

Unauthorized Facial Recognition

A new paradigm: privacy-preserving by birth

How to achieve AFR inside a basic camera module?

Motivation

How to achieve AFR inside a basic camera module?

Motivation

How to achieve AFR inside a basic camera module?

Motivation

How to achieve AFR inside a basic camera module?

Basic Idea: achieve AFR by adjusting ISP parameters

Image Signal Processing

Selected two ISP functions

- Color correction
- Gamma correction

Image Signal Processing

Selected two ISP functions

- > Color correction \longrightarrow a 3x3 matrix
- Gamma correction

$$\begin{bmatrix} R_{out} \\ G_{out} \\ B_{out} \end{bmatrix} = \operatorname{clip}_{[0,1]} \left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} R_{in} \\ G_{in} \\ B_{in} \end{bmatrix} \right)$$

adjustable parameters

Image Signal Processing

Selected two ISP functions

- > Color correction \longrightarrow a 3x3 matrix -
- ➢ Gamma correction → y-values

$$\begin{bmatrix} R_{out} \\ G_{out} \\ B_{out} \end{bmatrix} = \operatorname{clip}_{[0,1]} \left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} R_{in} \\ G_{in} \\ B_{in} \end{bmatrix} \right) \qquad y = y_i + \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i), \ i = 1, 2, \cdots, k - 1$$

ISP Parameter Adjustment

ISP Parameter Adjustment

Challenges

Challenges

C1 Utility of machine perception

How to make HAR algorithms function properly?

Challenges

C1 Utility of machine perception

How to make HAR algorithms function properly?

C2 Utility of human perception

How to allow human viewers to see images normally?

- Three-player game on privacy and utility
- Alternating optimization between Protector and Attacker

C1: Adversarial Learning Framework

Step 1: Update Protector

C1: Adversarial Learning Framework

Step 2: Update Attacker

C1: Adversarial Learning Framework

Step 2: Update Attacker

Protector learns robustness and transferability from an adaptive Attacker.

C2: Capacity Limitation

□ Adjustments for AFR decrease the image quality unavoidably.

C2: Capacity Limitation

Adjustments for AFR decrease the image quality unavoidably.

 $41 \approx 1/1,000,000$ of a DNN

Limited capacity: only 41 adjustable parameters

- 9 in color correction
- > 32 in gamma correction

C2: Capacity Limitation

Adjustments for AFR decrease the image quality unavoidably.
 Limited capacity: only 41 adjustable parameters

 $41 \approx 1/1,000,000$ of a DNN

- **J Limited capacity:** Only 41 adjustable p
 - 9 in color correction
 - > 32 in gamma correction

Original Image

Original Image

CamPro system

- camera module with ISP parameter adjustments
- image enhancer to improve the image quality

Evaluation

D E1: Privacy protection evaluation

- **E2:** Utility maintenance evaluation
- **E3:** Real-world evaluation

E1: Black-box AFR Performance

2 datasets		2 classi	fiers				10 moc	lels					
	7	1											
Dataset	Image Type	e Type Classifier	[Facial Recognition Model (Feature Extractor)									
	8 71		FaceNet ⁰	Arc18 ¹	Arc50 ²	Arc152 ³	Mag18 ⁴	Mag50 ⁵	Mag100 ⁶	Ada18 ⁷	Ada50 ⁸	Ada100 ⁹	0
CelebA	Raw Captured Enhanced	Nearest Nearest Nearest	67.1% 0.0% 0.2%	77.7% 0.0% 0.1%	82.9% 0.1% 0.4%	89.5% 0.0% 0.4%	$77.5\%\ 0.0\%\ 0.1\%$	90.1% 0.1% 0.7%	$90.6\%\ 0.1\%\ 0.8\%$	86.6% 0.4% 0.8%	90.2% 1.2% 1.3%	90.9% 1.5% 1.6%	84.3% 0.3% 0.6%
CelebA	Raw Captured Enhanced	Linear Linear Linear	64.7% 0.0% 0.1%	$70.1\% \\ 0.0\% \\ 0.1\%$	69.1% 0.1% 0.2%	86.6% 0.0% 0.2%	$75.5\% \\ 0.0\% \\ 0.1\%$	89.5% 0.1% 0.5%	$90.1\% \\ 0.1\% \\ 0.5\%$	82.5% 0.2% 0.4%	89.1% 0.6% 0.7%	90.2% 0.9% 1.0%	80.7% 0.2% 0.4%
LFW	Raw Captured Enhanced	Nearest Nearest Nearest	93.9% 0.1% 0.8%	92.7% 0.1% 0.6%	97.9% 0.6% 2.3%	99.2% 0.3% 1.4%	93.0% 0.1% 0.8%	99.3% 0.3% 2.6%	99.3% 0.4% 2.6%	98.7% 1.1% 3.3%	99.3% 1.7% 4.8%	99.4% 1.6% 5.5%	97.3% 0.6% 2.5%
LFW	Raw Captured Enhanced	Linear Linear Linear	92.2% 0.2% 0.8%	92.6% 0.1% 0.7%	97.8% 0.6% 2.4%	98.7% 0.3% 1.0%	92.0% 0.1% 0.7%	99.2% 0.2% 1.9%	99.2% 0.3% 2.0%	97.6% 0.7% 2.0%	99.1% 1.2% 3.0%	99.2% 1.2% 3.7%	96.8% 0.5% 1.8%
0 Eace Ne	t IncentionRes	NetV1· 1	ArcEace IRes	Not18.	$\frac{2}{4}$ ArcEac	a IRasNatS	E50: 3	ArcEace II	PasNat152	4 MagE	aca IRasN	lot18.	

⁰ FaceNet-InceptionResNetV1;
 ¹ ArcFace-IResNet18;
 ² ArcFace-IResNetSE50;
 ³ ArcFace-IResNet152;
 ⁴ MagFace-IResNet18;
 ⁵ MagFace-IResNet50;
 ⁶ MagFace-IResNet100;
 ⁷ AdaFace-IResNet18;
 ⁸ AdaFace-IResNet50;
 ⁹ AdaFace-IResNet100.

E1: Black-box AFR Performance

2 datasets		2 classif	fiers	ers 10 models									
Dataset	Image Type	Classifier	[Facial Recognition Model (Feature Extractor)									
Dutaset	ininge ippe		FaceNet ⁰	Arc18 ¹	Arc50 ²	Arc152 ³	Mag18 ⁴	Mag50 ⁵	Mag100 ⁶	Ada18 ⁷	Ada50 ⁸	Ada100 ⁹	i i ei age
CelebA	Raw	Nearest	67.1%	77.7%	82.9%	89.5%	77.5%	90.1%	90.6%	86.6%	90.2%	90.9%	84.3%
	Captured	Nearest	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.1%	0.4%	1.2%	1.5%	0.3%
	Enhanced	Nearest	0.2%	0.1%	0.4%	0.4%	0.1%	0.7%	0.8%	0.8%	1.3%	1.6%	0.6%
CelebA	Raw	Linear	64.7%	70.1%	69.1%	86.6%	75.5%	89.5%	90.1%	82.5%	89.1%	90.2%	80.7%
	Captured	Linear	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.1%	0.2%	0.6%	0.9%	0.2%
	Enhanced	Linear	0.1%	0.1%	0.2%	0.2%	0.1%	0.5%	0.5%	0.4%	0.7%	1.0%	0.4%
LFW	Raw	Nearest	93.9%	92.7%	97.9%	99.2%	93.0%	99.3%	99.3%	98.7%	99.3%	99.4%	97.3%
	Captured	Nearest	0.1%	0.1%	0.6%	0.3%	0.1%	0.3%	0.4%	1.1%	1.7%	1.6%	0.6%
	Enhanced	Nearest	0.8%	0.6%	2.3%	1.4%	0.8%	2.6%	2.6%	3.3%	4.8%	5.5%	2.5%
LFW	Raw	Linear	92.2%	92.6%	97.8%	98.7%	92.0%	99.2%	99.2%	97.6%	99.1%	99.2%	96.8%
	Captured	Linear	0.2%	0.1%	0.6%	0.3%	0.1%	0.2%	0.3%	0.7%	1.2%	1.2%	0.5%
	Enhanced	Linear	0.8%	0.7%	2.4%	1.0%	0.7%	1.9%	2.0%	2.0%	3.0%	3.7%	1.8%

⁰ FaceNet-InceptionResNetV1; ¹ ArcFace-IResNet18; ² ArcFace-IResNetSE50; ³ ArcFace-IResNet152; ⁴ MagFace-IResNet18; ⁵ MagFace-IResNet50; ⁶ MagFace-IResNet100; ⁷ AdaFace-IResNet18; ⁸ AdaFace-IResNet50; ⁹ AdaFace-IResNet100.

E1: Black-box AFR Performance

2 datasets		2 classi	fiers				10 mod	lels					
Dataset	Image Type	Classifier	[Facial Recognition Model (Feature Extractor)									Average
Dutuset	intage Type	Clussifier	FaceNet ⁰	Arc18 ¹	Arc50 ²	Arc152 ³	Mag18 ⁴	Mag50 ⁵	Mag100 ⁶	Ada18 ⁷	Ada50 ⁸	Ada100 ⁹	riveruge
CelebA	Raw	Nearest	67.1%	77.7%	82.9%	89.5%	77.5%	90.1%	90.6%	86.6%	90.2%	90.9%	84.3%
	Captured	Nearest	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.1%	0.4%	1.2%	1.5%	0.3%
	Enhanced	Nearest	0.2%	0.1%	0.4%	0.4%	0.1%	0.7%	0.8%	0.8%	1.3%	1.6%	0.6%
CelebA	Raw	Linear	64.7%	70.1%	69.1%	86.6%	75.5%	89.5%	90.1%	82.5%	89.1%	90.2%	80.7%
	Captured	Linear	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.1%	0.2%	0.6%	0.9%	0.2%
	Enhanced	Linear	0.1%	0.1%	0.2%	0.2%	0.1%	0.5%	0.5%	0.4%	0.7%	1.0%	0.4%
LFW	Raw	Nearest	93.9%	92.7%	97.9%	99.2%	93.0%	99.3%	99.3%	98.7%	99.3%	99.4%	97.3%
	Captured	Nearest	0.1%	0.1%	0.6%	0.3%	0.1%	0.3%	0.4%	1.1%	1.7%	1.6%	0.6%
	Enhanced	Nearest	0.8%	0.6%	2.3%	1.4%	0.8%	2.6%	2.6%	3.3%	4.8%	5.5%	2.5%
LFW	Raw	Linear	92.2%	92.6%	97.8%	98.7%	92.0%	99.2%	99.2%	97.6%	99.1%	99.2%	96.8%
	Captured	Linear	0.2%	0.1%	0.6%	0.3%	0.1%	0.2%	0.3%	0.7%	1.2%	1.2%	0.5%
	Enhanced	Linear	0.8%	0.7%	2.4%	1.0%	0.7%	1.9%	2.0%	2.0%	3.0%	3.7%	1.8%
⁰ FaceNet ⁵ MagFac	t-InceptionRes1 xe-IResNet50;	NetV1; ¹ ⁶ MagFace	ArcFace-IRes e-IResNet100	Net18; ; ⁷ Ad	² ArcFace aFace-IRes	e-IResNetS sNet18;	E50; ³ ⁸ AdaFace	ArcFace-II -IResNet5(ResNet152;); ⁹ AdaF	⁴ MagF Face-IResN	Face-IResN Jet100.	let18;	

The AFR effects of CamPro can transfer to various models, classifiers, and datasets.

E1: White-box Adaptive Attack

2 training modes		Fine	tune	Train Fro	m Scratch	Restoration rest	ge oratio
2 training los	ses 🔶	Softmax	ArcFace	Softmax	ArcFace	with	า U-N
10 models ←	FaceNet [*] Arc18 [*] Arc50 [*] Arc152 [*] Mag18 [*] Mag50 [*] Mag100 [*] Ada18 [*] Ada50 [*]	$ \begin{array}{r} 12.0\% \\ 10.1\% \\ 19.5\% \\ 3.7\% \\ 14.5\% \\ 15.6\% \\ 6.9\% \\ 5.4\% \\ 18.9\% \\ 5.0\% \\ \end{array} $	$\begin{array}{c} 0.0\% \\ 15.4\% \\ 0.0\% \\ 0.0\% \\ 18.7\% \\ 0.0\% \\ 0.0\% \\ 11.8\% \\ 10.1\% \\ 10.9\% \end{array}$	$\begin{array}{c} 2.3\% \\ 6.2\% \\ 4.1\% \\ 12.6\% \\ 7.1\% \\ 8.0\% \\ 5.3\% \\ 3.0\% \\ 5.8\% \\ 2.1\% \end{array}$	$\begin{array}{c} 0.0\% \\ 4.7\% \\ 10.7\% \\ 9.3\% \\ 5.7\% \\ 0.0\% \\ 0.0\% \\ 5.3\% \\ 13.2\% \\ 8.5\% \end{array}$	2.1% $2.1%$ $4.7%$ $3.9%$ $2.1%$ $6.3%$ $7.5%$ $5.4%$ $8.3%$ $10.2%$	
	Average	11.2%	6.7%	5.7%	5.7%	5.3%	

E1: White-box Adaptive Attack

2 training modes		Fine	tune	Train Fro	m Scratch	Restoration	restoratio
2 training los	ses 🗕	Softmax	ArcFace	Softmax	ArcFace		with U-N
10 models ←	FaceNet [*] Arc18 [*] Arc50 [*] Arc152 [*] Mag18 [*] Mag50 [*] Mag100 [*] Ada18 [*]	$\begin{array}{c} 12.0\% \\ 10.1\% \\ 19.5\% \\ 3.7\% \\ 14.5\% \\ 15.6\% \\ 6.9\% \\ 5.4\% \end{array}$	$\begin{array}{c} 0.0\% \\ 15.4\% \\ 0.0\% \\ 0.0\% \\ 18.7\% \\ 0.0\% \\ 0.0\% \\ 11.8\% \end{array}$	$\begin{array}{c} 2.3\% \\ 6.2\% \\ 4.1\% \\ 12.6\% \\ 7.1\% \\ 8.0\% \\ 5.3\% \\ 3.0\% \end{array}$	0.0% 4.7% 10.7% 9.3% 5.7% 0.0% 0.0% 5.3%	$2.1\% \\ 2.1\% \\ 4.7\% \\ 3.9\% \\ 2.1\% \\ 6.3\% \\ 7.5\% \\ 5.4\% \\ 0.2\% \\ 0.1\% \\ $	
	Ada 50° Ada 100^{*}	18.9% 5.0%	10.1% 10.9%	5.8% 2.1%	13.2% 8.5%	8.3% 10.2%	
	Average	11.2%	6.7%	5.7%	5.7%	5.3%	

CamPro is, to some extent, resistant to white-box adaptive attacks.

E2: Quantitative Results

Person detection performance

	Detection metrics -	AP	AP@0.5	AP@0.75	Precision	Recall	F1
2 baseline methods	Raw Images Low-Resolution Defocused CamPro	0.578 0.284 0.395 0.475	0.833 0.517 0.655 0.742	0.625 0.271 0.399 0.496	0.840 0.722 0.780 0.796	0.739 0.444 0.565 0.650	0.786 0.550 0.655 0.716

E2: Quantitative Results

Person detection performance

□ Image quality

Treat raw images as ground truth RMSE ↓ PSNR ↑ SSIM ↑ **MS-SSIM** Image Type Captured 0.299 10.8 dB 0.195 0.437 Enhanced 0.093 **21.5** dB 0.761 0.749

E2: Qualitative Results

• Raw images

• Captured images

• Enhanced images

E2: Generalization Ability

D Generalized to **pose estimation** and **image captioning**

(d) *"Two people playing* a video game in a living room."

(e) "A with food."

man and a (f) "A group of men woman sitting at a table standing next to each other."

E1 & E2: Privacy-Utility Tradeoff Analysis

E1 & E2: Privacy-Utility Tradeoff Analysis

E1 & E2: Privacy-Utility Tradeoff Analysis

E3: Real-world Evaluation

□ A prototype camera module (Sensor: IMX415 + ISP: RV1126)

E3: Real-world Evaluation

A prototype camera module (Sensor: IMX415 + ISP: RV1126)
 Real-world captured images are close to simulation results.

Real captured image

- Due to shooting noises, real-world results are better on privacy and worse on utility than simulation ones.
 - ➢ Accuracy on LFW: 95.9% (Raw) → 0.13% (Cap.) / 0.28% (Enh.)
 - > AP of person detection = 0.648
 - RMSE = 0.129; PSNR = 17.9; SSIM = 0.622

E3: Deployment on Android

- Android camera subsystem parameters
 - ColorSpaceTransform
 - TonemapCurve

Tested Android Smartphones

Device Model	OS	Android version
Google Pixel Samsung S20 FE Huawei Nova 4 OPPO Find X5 Pro iQOO Neo5 SE iQOO Neo6 SE Redmi K30S Ultra	stock Android One UI 3.1 EMUI 10.0.0 ColorOS 13.1 OriginOS 3 OriginOS 3 MIUI 14.0.5	10 11 10 13 13 13 12
MEIZU 16th Plus	Flyme 8.1.8.0A	8

D Propose a new paradigm, privacy-preserving by birth

- Optimize ISP parameters to achieve anti-facial recognition
- Generalized to various facial recognition algorithms and even resistant to white-box adaptive attacks

CamPro: Camera-based Anti-Facial Recognition

Wenjun Zhu, Yuan Sun, Jiani Liu, Yushi Cheng, Xiaoyu Ji, Wenyuan Xu

USSLAB, Zhejiang University

USSLAB Website: www.usslab.org

Contact Authors: zwj_@zju.edu.cn xji@zju.edu.cn wyxu@zju.edu.cn Artifact Evaluated DESS SWAPOSIUM Available Functional Reproduced

Evaluated Artifact:

zenodo.org/records/10156141

Code Release:

github.com/forget2save/CamPro

