

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless Communications (NDSS 2024)

Yang Yang, Robert H. Deng, Guomin Yang, Yingjiu Li, HweeHwa Pang, Minming Huang, Rui Shi, Jian Weng

 School of Computing and Information Systems, Singapore Management University, Singapore 2. Department of Computer Science, University of Oregon, USA
Beijing Electronic Science and Technology Institute, Beijing, China
College of Information Science and Technology, Jinan University, Guangzhou, China

Service Discovery

- Service discovery protocols (SDPs) are essential components of networking systems
 - They enable devices and services to dynamically discover and communicate with each other in a network environment
 - They facilitate the automatic detection and advertisement of available services, making it easier for devices to locate and interact with desired resources
 - Well known SDPs includes

Wi-Fi, AirDrop, BLE, DNS-SD, mDNS, SSDP, UPnP, etc.

Attacks on SDPs

SDPs	Man-in-the Middle (MitM) Attacks	Spoofing Attacks	Denial-of-service (DoS) Attacks	User Identification Attacks	Tracking Attacks
DNS-SD [18]	\checkmark				
mDNS [19]	\checkmark				
SSDP [20]	\checkmark				
UPnP [21]			\checkmark		
Wi-Fi [1]	\checkmark	\checkmark		\checkmark	
BLE [3]	\checkmark	\checkmark		\checkmark	
AirDrop [2]	\checkmark	\checkmark		\checkmark	
PrivateDrop [16]				\checkmark	
CBN [9]	\checkmark	\checkmark			
WTSB [5]				\checkmark	

[16] A. Heinrich, M. Hollick, T. Schneider, M. Stute, C. Weinert. PrivateDrop: practical privacy-preserving authentication for Apple airDrop. In USENIX Security, 2021.

[9] A. Cassola, E. O. Blass, G. Noubir. Authenticating privately over public Wi-Fi hotspots. In CCS, 2015.

[5] D. J. Wu, A. Taly, A. Shankar, D. Boneh. Privacy, discovery, and authentication for the internet of things. In ESORICS, 2016.

SDPs: Requirements

Privacy Enhancement Requirements

- 1. Private Service Broadcast
- 2. Mutual Authentication
- 3. Bilateral Anonymity
- 4. Bilateral Flexible Policy Control
- 5. Selective Attribute Disclosure
- 6. Multi-Show Unlinkability

High Usability Requirements

- 1. No Pre-registered Pairing
- 2. No Third-party Dependency during Service Discovery
- 3. No In-advance Identity Issuance

PriSrv: Contributions

- PriSrv: the first service discovery protocol, to meet both privacy enhancement and high usability requirements
 - Core Components of PriSrv
 - Anonymous Credential-based Matchmaking Encryption (ACME)
 - Fast Anonymous Credential (FAC)
 - Interoperability with Existing Protocols
 - Extensible Authentication Protocol (EAP), mDNS, BLE, AirDrop
 - Deployment on Multiple Platforms in Real Networks
 - Multiple hardware platforms: desktop, laptop, mobile phone and Raspberry Pi
 - "immediate response": delay stays well bellow 1 second

Comparison of SDPs

	Privacy Enhancement						High Usability			
SD Protocols	Private	Mutual	Bilateral	Bilateral Flex.	Sel. Attr.	Multi-Show	No Pre-reg.	No 3rd-party	No In-advance	
	Broadcast	Authn.	Anon.	Pol. Ctrl.	Disclosure	Unlinkability	Pairing	Dependence	ID Issuance	
DNS-SD [18]	×	×	×	×	×	×	\checkmark	×	×	
mDNS [19]	×	×	×	×	×	×	\checkmark	\checkmark	×	
SSDP [20]	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	
UPnP [21]	×	×	×	×	×	×	\checkmark	\checkmark	\checkmark	
Wi-Fi [1]	×	\checkmark	×	×	×	×	\checkmark	\checkmark	×	
BLE [3]	×	\checkmark	×	×	×	×	\checkmark	\checkmark	\checkmark	
AirDrop [2]	×	\checkmark	×	×	×	×	\checkmark	\checkmark	×	
PrivateDrop [16]	×	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark	×	
CBN [9]	×	×	×	×	×	×	×	\checkmark	×	
WTSB [5]	\checkmark	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark	×	
PriSrv	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	

Smart Office: screen mirroring service

Smart TV: Service Provider

Public Attributes: (device type, vendor, model, OS, domain name) Private Attributes: (device name, location, IP address, security domain) Service Policy: Device Type = "Smart phone ∨ Laptop" ∧ OS = "Android ∨ iOS ∨ Windows" ∧ Department = "A ∨ B"

Public Attributes: (device type, model, OS, department) Private Attributes: (device name, classified device, IP address, security domain) Connection Policy: Device Type = "TV" ∧ Vendor = "C ∨ D" ∧ Domain Name = "*.XYZ.COM" Client Device

is Attributes (device type, vendor mode) CD, domain name) new Horbotes (device same, location, Phatbour, security domain ine Holip: Device Type = Stratt phane + Laptory 1 OS = Rechtal + 10 + 11 1 Deschment = 10 + 13

ACME

- Anonymous Credential-based Matchmaking Encryption (ACME)
 - A new cryptographic primitive to support several core features in PriSrv
 - bilateral policy control, anonymous authentication, selective attribute disclosure
 - ACME is a variant of Matchmaking Encryption (ME)
 - The sender and receiver can use anonymous credentials to prove their attributes without revealing their identities
 - Provide stronger privacy guarantees and flexible policy enforcement
 - Fast Anonymous Credential (FAC): Building block of ACME
 - Enable fast anonymous authentication
 - Maintain a constant and small credential size

Interoperability

 Extends RFC 3748 on Extensible Authentication Protocol (EAP) to support private service discovery

Fig. 4: Architecture of Privacy Enahnced EAP

Interoperability

- Privacy Enhanced EAP
 - Extends RFC 3748 on Extensible Authentication Protocol (EAP) to support private service discovery
- Privacy Enhanced mDNS and BLE
 - PriSrv can be integrated in the Vanadium framework for developing privacy enhanced mDNS and BLE

Fig. 4: Architecture of Privacy Enahnced EAP

Interoperability

- Extends RFC 3748 on Extensible Authentication Protocol (EAP) to support private service discovery
- Privacy Enhanced mDNS and BLE
 - PriSrv can be integrated in the Vanadium framework for developing privacy enhanced mDNS and BLE
- Privacy Enhanced Apple AirDrop
 - Avoid transmitting identifier of service provider during broadcast phase
 - Encrypt certificates of both parties using ACME

Fig. 4: Architecture of Privacy Enahnced EAP

Implementation and Performance

	Private Service Broadcast							
Device	MNT	159	MNT	201	BN256			
	(80-bit S	ecurity)	(90-bit S	ecurity)	(100-bit S	ecurity)		
	Comp.	Comm.	Comp.	Comm.	Comp.	Comm.		
1	158.931	164.34	180.337	212.96	202.822	537.98		
2	216.493	164.34	261.059	212.96	287.287	537.98		
3	385.553	164.34	443.686	212.96	482.725	537.98		
4	638.259	164.34	880.868	212.96	1188.392	537.98		
	Anonymous Mutual Authentication							
		Anonym	ous Mutu	al Authe	ntication			
Device	MNT	Anonym 159	ous Mutua MNT	al Auther 201	ntication BN2	.56		
Device	MNT (80-bit Se	Anonym 159 ecurity)	ous Mutua MNT (90-bit S	al Auther 201 ecurity)	ntication BN2 (100-bit S	56 Security)		
Device	MNT (80-bit So Comp.	Anonym 159 ecurity) Comm.	MNT (90-bit So Comp.	al Auther 201 ecurity) Comm.	ntication BN2 (100-bit S Comp.	56 Security) Comm.		
Device	MNT (80-bit So Comp. 429.282	Anonym 159 ecurity) Comm. 164.45	MNT (90-bit S Comp. 517.512	al Auther 201 ecurity) Comm. 213.09	ntication BN2 (100-bit S Comp. 673.039	56 Security) Comm. 538.83		
Device	MNT (80-bit So Comp. 429.282 576.161	Anonym 159 ecurity) Comm. 164.45 164.45	ous Mutua MNT (90-bit S Comp. 517.512 686.054	al Auther 201 ecurity) Comm. 213.09 213.09	ntication BN2 (100-bit S Comp. 673.039 854.177	56 ecurity) Comm. 538.83 538.83		
Device	MNT (80-bit So Comp. 429.282 576.161 727.572	Anonym 159 ecurity) Comm. 164.45 164.45 164.45	ous Mutua MNT (90-bit S Comp. 517.512 686.054 892.712	al Auther 201 ecurity) Comm. 213.09 213.09 213.09	ntication BN2 (100-bit S Comp. 673.039 854.177 972.163	56 ecurity) Comm. 538.83 538.83 538.83		

TABLE VII:	Performance	of	PriSrv	(ms/KB)
------------	-------------	----	--------	---------

No.	Туре	Hardware Platforms
1	Desktop	Intel [®] Core [™] i9-7920X CPU @ 2.9GHz×12, 16GB
2	Laptop	Intel® Core TM i5-10210U CPU @ 1.6GHz×4, 8GB
3	Phone	ARM Cortex @2.84GHz+3×2.4GHz, 4GB
4	Raspberry P	i ARM Cortex @1.5GHz×4, 2GB

TABLE III: Hardware Platforms for Experiments

Implementation and Performance

	Private Service Broadcast							
Davias	MNT	159	MNT	201	BN2	BN256		
Device	(80-bit Security)		(90-bit Security)		(100-bit Security)			
	Comp.	Comm.	Comp.	Comm.	Comp.	Comm.		
1	158.931	164.34	180.337	212.96	202.822	537.98		
2	216.493	164.34	261.059	212.96	287.287	537.98		
3	385.553	164.34	443.686	212.96	482.725	537.98		
4	638.259	164.34	880.868	212.96	1188.392	537.98		
		Anonym	ous Mutu	al Authe	ntication			
	MNT	159	MNT	201	BN256			

Device	MNT159		MNT	201	BN256	
Device	(80-bit S	ecurity)	(90-bit S	ecurity)	(100-bit Security)	
	Comp.	Comm.	Comp.	Comm.	Comp.	Comm.
1	429.282	164.45	517.512	213.09	673.039	538.83
2	576.161	164.45	686.054	213.09	854.177	538.83
3	727.572	164.45	892.712	213.09	972.163	538.83
4	1224.365	164.45	1832.187	213.09	2711.013	538.83

No.	Туре	Hardware Platforms
1	Desktop	Intel® Core TM i9-7920X CPU @ 2.9GHz×12, 16GB
2	Laptop	Intel® Core TM i5-10210U CPU @ 1.6GHz×4, 8GB
3	Phone	ARM Cortex @2.84GHz+3×2.4GHz, 4GB
4	Raspberry P	i ARM Cortex @1.5GHz×4, 2GB

TABLE III: Hardware Platforms for Experiments

On Device 1-3

Private Service Broadcast Phase: Below 0.538 s Mutual Authentication Phase: below 0.893 s

Stay well **below 1 s**, which humans perceive the delays as an "**immediate response**"

TABLE VII: Performance of PriSrv (ms/KB)

Implementation and Performance

	Private Service Broadcast							
Davias	MNT159		MNT	201	BN256			
Device	(80-bit S	ecurity)	(90-bit Security)		(100-bit S	Security)		
	Comp.	Comm.	Comp.	Comm.	Comp.	Comm.		
1	158.931	164.34	180.337	212.96	202.822	537.98		
2	216.493	164.34	261.059	212.96	287.287	537.98		
3	385.553	164.34	443.686	212.96	482.725	537.98		
4	638.259	164.34	880.868	212.96	1188.392	537.98		
Anonymous Mutual Authentica				ntication				
Davica	MNT	159	MNT	201	BN256			
Device	(80-bit Security)		(90-bit Security)		(100-bit Security)			
	Comp.	Comm.	Comp.	Comm.	Comp.	Comm.		
1	429.282	164.45	517.512	213.09	673.039	538.83		
2	576.161	164.45	686.054	213.09	854.177	538.83		
3	727.572	164.45	892.712	213.09	972.163	538.83		

TABLE VII: Performance of PriSrv (ms/KB)

1832.187

1224.365

164.45

No.	Туре	Hardware Platforms
1	Desktop	Intel [®] Core [™] i9-7920X CPU @ 2.9GHz×12, 16GB
2	Laptop	Intel® Core TM i5-10210U CPU @ 1.6GHz×4, 8GB
3	Phone	ARM Cortex @2.84GHz+3×2.4GHz, 4GB
4 R	Raspberry F	Pi ARM Cortex @1.5GHz×4, 2GB

TABLE III: Hardware Platforms for Experiments

On Device 1-3

Private Service Broadcast Phase: below 0.538 s Mutual Authentication Phase: below 0.893 s

Stay well **below 1 s**, which humans perceive the delays as an "**immediate response**"

On Device 4

Private Service Broadcast Phase: below 1.189 s Mutual Authentication Phase: below 2.712 s

Delays are longer but not too significant

2711.013

538.83

213.09

Limitations and Open Problems

- Large Message Size
 - This large size of the outer discovery broadcast poses a scalability challenge
 - particularly on slower networks like BLE, resulting in high transmission overhead and reception delays
 - Packet Loss
 - clients must wait for the broadcast ciphertext in the subsequent round to receive full packets, causing additional delays in reception

Limitations and Open Problems

- Large Message Size
 - This large size of the outer discovery broadcast poses a scalability challenge
 - particularly on slower networks like BLE, resulting in high transmission overhead and reception delays
 - Packet Loss
 - clients must wait for the broadcast ciphertext in the subsequent round to receive full packets, causing additional delays in reception
- Unlinkability across Multiple layers
 - PriSrv protects its own payloads for achieving unlinkability at its positioned layer
 - As for achieving unlinkability at lower layers, the lower layer headers must be protected using specific anti-tracking mechanisms designed at lower layers

Thank You!