NODLINK: An Online System for Fine-Grained APT Attack Detection and Investigation

Shaofei Li¹, Feng Dong², Xusheng Xiao³, Haoyu Wang², Fei Shao⁴, Jiedong Chen⁵,

Yao Guo¹, Xiangqun Chen¹, Ding Li¹

¹School of Computer Science, Peking University, ²Huazhong University of Science and Technology ³Arizona State University, ⁴Case Western Reserve University, ⁵Sangfor Technologies Inc.

Advanced Persistent Threats

- **APT attacks** have become a major threat to modern enterprises
 - Advanced: Attackers have diverse attack vectors \rightarrow Zero-day exploits
 - **Persistent**: Long duration \rightarrow Low-and-slow attack patterns
- Existing Endpoint Detection and Response (EDR) systems often fail

Provenance-Based Detection Systems

- Provenance-based detection systems are based on **provenance log**
 - **Node:** system entities (process, file, network)
 - Edge: system events (read, write, fork, execve, sendto, recvfrom, ...)
- Threat detection is to search for a needle in a haystack

Provenance-Based Approaches

• Workflow of provenance-based APT detection:

Provenance graph construction

	Efficiency	Conciseness	Generalizability
Rule-based Systems	Efficient	Fine-grained	Manual rules
Anomaly-based Systems	Heavy	Coarse-grained	Generalized

• Goal: Achieve efficiency, conciseness and generalizability altogether

Key Insight: Properties

- Attack Affinity:
 - Attacks are more likely to generate suspicious processes

Attack Polymerism:

• Attack actions are topologically close

- To utilize these two properties, we model provenance graph construction as an **online Steiner Tree Problem**
- A Steiner tree is a subgraph that spans the given node set (terminal set)
- Online Steiner Tree Problem (OSTP)
 - Undirected graph with non-negative weight for each edge
 - New terminals are online revealed
 - Keep the Steiner tree that has the minimal weight
- Optimal greedy algorithm

Key Insight

- Bounded approximation algorithm
- When new terminal arrives:
 - Find the **shortest path** from new terminal to the existing Steiner tree
 - Extend the existing Steiner tree with the new path

Key Insight

- To utilize these two properties, we model provenance graph construction as an **online Steiner Tree Problem**
 - Terminals: IOCs or anomaly events
 - Edge weight: the same non-negative weight
 - Search for a subgraph that links all the anomalies with minimal number of edges

- C1: How to detect long-term attacks with limited resources
 - Requires knowing the whole provenance graph.
 - **Solution1:** In-memory cache design prioritizing suspicious events
- C2: How to identify terminals in STP with constraint of timeliness.
 - Existing methods are time-consuming and not suitable for online system.
 - Solution2: Inverse Document Frequency-weighted Variational AutoEncoder
- C3: Current algorithms for OSTP are not efficient enough for APT attack detection.
 - Find the shortest path from the new terminal to all previous terminals.
 - **Solution3**: Importance-Score-Guided greedy algorithm for OSTP optimization

Our Solution: NODLINK

Detect anomalies through four phases periodically:

Normal Events
Anomalous Events
Evicted Events

C1: How to detect long-term attacks

- **Solution1:** In-memory cache design prioritizing suspicious events
 - Cache more suspicious and actively evolving graphs
- In every time window:
 - In-Memory Cache Construction
 - Find the solution on the current provenance graph(Hopset)
 - Cache Update
 - Update cache with the hopset we just constructed
 - Preserve Top-K hopsets in the cache and evict others to disk
 - **Prioritize metric**: Energy of hopset

$$E = \epsilon^{\text{Age}} * \text{HopsetAnomalyScore}(H) \qquad \epsilon < 1$$

HopsetAnomalyScore(
$$H$$
) = $\sum_{v \in H}$ AnomalyScore(v)

C2: How to identify terminals in STP

- **Solution2:** Inverse Document Frequency(IDF)-weighted Variational AutoEncoder (VAE)
 - Embed process nodes and classify them
- Process-centric Embedding
 - Node-level feature embedding: pretrained FastText model using historical data

Туре	Node-level Feature	Sentence
Command Line	date -d 4857 second ago +%s	[date, second, ago]
Files	/etc/tmp/log.txt	[etc, tmp, log, txt]
IP Addresses	<126.7.8.7, 80, 162.0.0.1, 8080>	[126, 7, 8, 7, 80, 162, 0, 0, 1, 8080]

• IDF-Weighted combination:

$$V_{p} = w_{c} * V_{c} + \sum w_{f_{i}} * V_{f_{i}} + \sum w_{n_{i}} * V_{n_{i}} \quad w_{c} = \log(\frac{P}{P_{c}}) \quad w_{f_{i}} = \log(\frac{P}{P_{f_{i}}}) \quad w_{n_{i}} = \log(\frac{P}{P_{n_{i}}})$$
¹¹

C2: How to identify terminals in STP

- Anomaly Detection: classify unusual processes as anomaly
 - VAE-based detection: based on reconstruction error (RE)

• Anomaly score: balance the RE for unstable processes

AnomalyScore(p) =
$$\log(\frac{\text{RE}(p)}{\text{StableValue}(p)})$$

• Anomaly: processes with anomaly score over 90th percentile

- **Solution3:** Importance-oriented greedy algorithm for OSTP optimization
 - Search for hopset locally and takes advantage of attack polymerism
- Hopset Construction: Importance-Score-Guided Search (ISG)
 - Start local searching procedures for each terminal
 - Hopset keeps *θ* nodes prioritized by **Importance Value(IV)**

$$IV(v) = \alpha^{\text{Distance}}(\beta * \text{AnomalyScore}(v) + \gamma * \frac{\text{OutDegree}(v)}{\text{InDegree}(v) + 1}) \qquad \begin{array}{l} \alpha < 1 \\ \beta \gg \gamma \end{array}$$

- **Complexity:** $O(E + \theta N)$
- **Competive Ratio**: $2\theta O(logk) \approx O(logk)$

Evaluation: Datasets

- Close-World Datasets:
 - DARPA TC dataset
 - Industrial Arena dataset
 - In-lab Arena dataset¹

Open-World Datasets:

Deploy NODLINK to monitor 10 realistic customers

	Dataset	#APT	Duration	#Host	Event Rate	#Activities [*]
Close	DARPA-CADETS	3	247h	1	16.87 eps	21
	DARPA-THEIA	1	247h	1	11.25 eps	97
	DARPA-TRACE	2	264h	1	75.76 eps	93
world	Industrial Arena	3	336h	22	40.74 eps	197
	In-lab Arena	5	144h	5	48.23 eps	202
Open World	-	7	120h	300+	39.35 eps	568

* #Activities is the number of malicious activities in the dataset.

Evaluation: Effectiveness

- Graph-level accuracy:
 - Detects **all the attacks** and only reports **14 false positives**.
 - ProvDetector and HOLMES report 783 and 416 false positives
- Node-level accuracy:
 - Node-level precision: comparable with ProvDetector; one to three orders of magnitude higher than two online baselines
 - Node-level recall: covers 98% of the attacks on average

	Node-level Precision			
	ProvDetector	HOLMES	UNICORN	NodLink (PI,HI,UI)
DARPA-CADETS	NA	2.84×10^{-3}	1.25×10^{-4}	0.14 (-,47,1082)
DARPA-THEIA	0.01	3.61×10^{-3}	1.86×10^{-4}	0.23 (23,62,1218)
DARPA-TRACE	NA	1.35×10^{-3}	3.20×10^{-5}	0.25 (-,184,7817)
Industrial Arena	0.14	5.10×10^{-3}	1.39×10^{-3}	0.21 (2,41,152)
In-lab Arena	0.16	8.76×10^{-3}	1.95×10^{-3}	0.17 (1,19,87)
Open-World	0.13	NA	3.61×10^{-4}	0.14 (1,NA,390)

	Node-level Recall				
	ProvDetector	HOLMES	NopLink		
DARPA-CADETS	NA	0.95		1.00	
DARPA-THEIA	1.00	0.98		1.00	
DARPA-TRACE	NA	0.74		0.98	
Industrial Arena	0.20	0.23		0.96	
In-lab Arena	0.98	0.32		0.92	
Open-World	1.00	NA		1.00	

Evaluation: Efficiency

- **Throughput:** how many system events can be processed per second (eps)
 - Comparable with rule-based HOLMES; **21x higher** than ProvDetector; **7x higher** than UNICORN
 - Capable of monitoring **329** hosts, considering that an open-world host generates an average of **40** events per second

Evaluation: Attacks Detected In Production (の) シレネト ジョ PEKING UNIVERSITY

• NODLINK detects 7 real attacks in the open-world experiment

- Online provenance-based detection systems are preferred over post-mortem ones in APT attack detection.
- We propose NODLINK, an online provenance-based detection system that can achieve efficiency, conciseness and generalizability altogether. The key idea is to model the APT attack detection problem as an online STP.
- Our experiments show that NODLINK can achieve higher accuracy with the same or higher throughput.

https://github.com/PKU-ASAL/Simulated-Data lishaofei@pku.edu.cn