
SigmaDiff: Semantics-Aware Deep
Graph Matching for Pseudocode Diffing

Lian Gao, Yu Qu, Sheng Yu, Yue Duan, Heng Yin

Pseudocode Diffing

Pseudocode of Two Given
Binaries

Pseudocode Diffing

Pseudocode of Two Given
Binaries

Locate Similar
Tokens

Capture
Different
Tokens

Pseudocode Diffing

Vulnerability/patch Detection

Pseudocode of Two Given
Binaries

Locate Similar
Tokens

Capture
Different
Tokens

Pseudocode Diffing

Vulnerability/patch Detection

Plagiarism Detection

Pseudocode of Two Given
Binaries

Locate Similar
Tokens

Capture
Different
Tokens

Pseudocode Diffing

Vulnerability/patch Detection

Plagiarism Detection

Pseudocode of Two Given
Binaries

Locate Similar
Tokens

Capture
Different
Tokens

Lineage Analysis

Comparison with Binary Diffing

Benefits:

● More concise and human-readable

Comparison with Binary Diffing

Benefits:

● More concise and human-readable
● More fine-grained

Comparison with Binary Diffing

Benefits:

● More concise and human-readable
● More fine-grained
● The recovered semantic

information could be leveraged

Comparison with Binary Diffing

Benefits:

● More concise and human-readable
● More fine-grained
● The recovered semantic

information could be leveraged
● Natural support of

cross-architecture diffing

Existing Work

Traditional approaches (e.g., BinDiff, Diaphora)
● rely on heuristics (e.g., function name) to find similar functions, perform basic block matching

along the control flow graph (BinDiff), or simple string-based matching at the token level
(Diaphora)

● not robust and can be easily thwarted by compiler optimizations

Existing Work

Traditional approaches (e.g., BinDiff, Diaphora)
● rely on heuristics (e.g., function name) to find similar functions, perform basic block matching

along the control flow graph (BinDiff), or simple string-based matching at the token level
(Diaphora)

● not robust and can be easily thwarted by compiler optimizations

Dynamic analysis-based approaches (e.g., BLEX, iBinHunt)
● capturing the semantics of binaries and have good resilience against code obfuscation
● low code coverage

Existing Work

Traditional approaches (e.g., BinDiff, Diaphora)
● rely on heuristics (e.g., function name) to find similar functions, perform basic block matching

along the control flow graph (BinDiff), or simple string-based matching at the token level
(Diaphora)

● not robust and can be easily thwarted by compiler optimizations

Dynamic analysis-based approaches (e.g., BLEX, iBinHunt)
● capturing the semantics of binaries and have good resilience against code obfuscation
● low code coverage

Learning-based approaches (e.g., DeepBinDiff)
● encode graph information into numerical vectors, a.k.a, graph embeddings, and perform

binary diffing
● distill unique semantic-level features of a program
● does not scale well on large binaries

Motivating Example (CVE-2020-13790)
Challenges:
Pseudocode-level changes (noises) that are caused by compilers and decompilers

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Challenges:
Pseudocode-level changes (noises) that are caused by compilers and decompilers

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Challenges:
Pseudocode-level changes (noises) that are caused by compilers and decompilers

● Different variable names

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Challenges:
Pseudocode-level changes (noises) that are caused by compilers and decompilers

● Different variable names
● Different expressions

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Challenges:
Pseudocode-level changes (noises) that are caused by compilers and decompilers

● Different variable names
● Different expressions
● Different control constructs

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Observations:
● A large number of syntax level changes in

decompilation are introduced during the
transformation from intermediate
representation (IR) to pseudocode

Design Choice:
● Perform diffing at IR level and map the

IR-level diffing results up to the
pseudocode level

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Challenges:
● Different variable names

Design Choice:
● Perform a lightweight symbolic analysis to

associate each IR variable with a symbolic
expression that reveals how the value of that
IR variable is calculated

Motivating Example (CVE-2020-13790)

Source Code Pseudocode (old version) Pseudocode (new version)

Challenges:
● Unstable control flow

Design Choice:
● Leverage data and control

dependencies to capture contextual
information for each IR

Motivating Example (CVE-2020-13790)
Challenges

● Noises in the graph matching
● Large number of tokens
● NP-hard graph matching problem

Design Choice
● Apply deep graph matching consensus

(DGMC) model to fully exploit the neighboring
contextual information

● Leverages the computing power of modern
GPUs

Approach Overview

Approach Overview

IPDG with Node Features

IPDG with Node Features
(1) Generate inter-procedural program dependency graph

(2) Perform lightweight symbolic analysis
=> Node Features

IPDG with Node Features
(1) Generate inter-procedural program dependency graph

Training Node Selection

Training Nodes:
● Node pairs with high similarity and uniqueness

Used in semi-supervised learning:
● Source and target graphs + small

set of training nodes => mappings for the rest of the nodes

Training Node Selection

1. void foo(undefined8* param_1) {
2. lVar2 = bar(param_1);
3. if (lVar2 == 0) {
4. return;
5. }
6. *(param_1 + 8) = lVar2;
7. }

1. void foo(undefined8* param_1) {
2. lVar2 = bar(param_1);
3. if (lVar2 != 0) {
4. *(param_1 + 8) = lVar2;
5. }
6. }

STORE CONST ARG1+8 ARG1+20

Select IRs (nodes):
● that have unique node feature
● that appear in both graphs

Diffing
Deep Graph Matching Consensus (DGMC) model [1]

● A two-stage deep graph matching architecture
○ Leveraging Graph Neural Network (GNN) to

obtains the initial matchings
○ Iteratively reaching neighborhood consensus

(ensuring the neighbors of the matched nodes are
correctly matched to each other as well)

[1] Fey, Matthias, et al. "Deep Graph Matching Consensus." International Conference on Learning Representations.
2019.

Diffing
Deep Graph Matching Consensus (DGMC) model [1]

● A two-stage deep graph matching architecture
○ Leveraging Graph Neural Network (GNN) to

obtains the initial matchings
○ Iteratively reaching neighborhood consensus

(ensuring the neighbors of the matched nodes are
correctly matched to each other as well)

Modifications:
● Increase the penalty of incompatible types
● Add more hops
● Introduce the “pre-training and fine-tuning” schema
● Design an iterative algorithm to avoid the

out-of-memory problem in GPU

[1] Fey, Matthias, et al. "Deep Graph Matching Consensus." International Conference on Learning Representations.
2019.

Evaluation
● Compare with Diaphora and DeepBinDiff

○ Cross-version
○ Cross-optimization-level
○ Cross-compiler
○ Cross-architecture

● Conduct Patch Detection
○ Case studies on real-world vulnerabilities
○ Zoom

Evaluation

Evaluation

Evaluation

● Outperforms Diaphora and DeepBinDiff in
most of the diffing tasks

● Outperforms Diaphora by 308%, 85%, 38%
in terms of F1-scores in O0 vs. O3, O1 vs.

O3, and O2 vs. O3, respectively

Vulnerability/Patch Analysis

Vulnerability/Patch Analysis

● Identify thirteen vulnerabilities in
 Windows (v5.9.7.3931) and Linux
(v5.9.6.2225)

● Precisely pinpoint eight
vulnerabilities at token level

Open Source Project

https://github.com/yijiufly/SigmaDiff

Thank you!

https://github.com/yijiufly/SigmaDiff

