

Secret-shared Shuffle with Malicious Security

Xiangfu Song¹, Dong Yin², Jianli Bai³, Changyu Dong⁴, Ee-Chien Chang¹

¹National University of Singapore ²Ant Group ³University of Auckland ⁴Guangzhou University

Table of Contents

- Background
- A semi-honest shuffle protocol: CGP shuffle protocol
- Existing maliciously secure CGP-like protocols & Security analysis
- Our maliciously secure CGP shuffle protocol
- Performance
- Conclusion

Background: Shuffle

• When playing cards and mah-jong...

Background: Secret-shared Shuffle (SSS)

- Privacy goals:
 - No party learns any information about *x* or *y*.
 - No party learns any information about π .

Background: More Applications

- Private database Join and aggregation [MRR20, ACDG+21, JSZD+22]
- Secure graph analysis [AFOP+21]
- Secure sorting [AHIK+22]
- Anonymous communication [EB22, LK23]

• ...

[MRR20] P. Mohassel, P. Rindal, and M. Rosulek, "Fast database joins and psi for secret shared data", ACM CCS 2020.

[ACDG+21] E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine, and C. Weng, "Aggregate measurement via oblivious shuffling," Cryptology ePrint Archive, 2021.

[JSZD+22] Y. Jia, S. Sun, H. Zhou, J. Du, and D. Gu, "Shuffle-based private set union: Faster and more secure", USENIX Security 2022.

[AFOP+21] T. Araki, J. Furukawa, K. Ohara, B. Pinkas, H. Rosemarin, and H. Tsuchida, "Secure graph analysis at scale", ACM CCS 2021.

[AHIK+22] G. Asharov, K. Hamada, D. Ikarashi, R. Kikuchi, A. Nof, B. Pinkas, K. Takahashi, and J. Tomida, "Efficient secure three-party sorting with applications to data analysis and heavy hitters", ACM CCS 2022.

[EB22] S. Eskandarian and D. Boneh, "Clarion: Anonymous communication from multiparty shuffling protocols", NDSS 2022.

[LK23] D. Lu and A. Kate, "Rpm: Robust anonymity at scale", PoPETs 2023.

CGP Shuffle Protocol: Overview

• Proposed by Chase-Ghosh-Poburinnaya [CGP20]

[CGP20] M. Chase, E. Ghosh, and O. Poburinnaya, "Secret-shared shuffle," ASIACRYPT 2020.

CGP Shuffle Protocol: Overview

• Two one-side shuffle \rightarrow (two-side) secret-shared shuffle

One-side Shuffle Protocol

Oblivious Punctured Matrix (OPM) Generation

• OPM generation: Oblivious transfer (OT) + Puncturable pseudorandom function (PPRF)

Alice doesn't know $\mathbf{M}_{i,\pi(i)}$ for row *i*

Outputs Δ such that $\Delta_i = \text{sum of column } \pi(i) - \text{sum of row } i$ = $a_{\pi(i)} - b_i$

Outputs a, b such that b_i = sum of row i and a_j = sum of column j,

 $\Delta = \pi(a) - b$ as required

Maliciously Secure SSS

VS.

Semi-honest (Honest-but-Curious) adversary

Malicious adversary

Maliciously Secure SSS

VS.

Semi-honest (Honest-but-Curious) adversary

Malicious adversary

- Two existing maliciously secure CGP shuffle protocols [Lau21, EB22]
- Security goals
 - *Privacy*: hiding 1) the shared secrets and 2) the permutation being used.
 - <u>Correctness</u>: ensuring 1) integrity of the shared secrets and 2) a correct shuffling.

[Lau21] P. Laud, "Linear-time oblivious permutations for spdz", CANS 2021.

[EB22] S. Eskandarian and D. Boneh, "Clarion: Anonymous communication from multiparty shuffling protocols", NDSS 2022.

• Ensuring correctness using MACs [Lau21, EB21]

[EB21] S. Eskandarian and D. Boneh, "Clarion: Anonymous communication from multiparty shuffling protocols", NDSS 2022. [Lau21] P. Laud, "Linear-time oblivious permutations for spdz", CANS 2021.

• Ensuring correctness using MACs

• Ensuring correctness using MACs

- Previous works [Lau21, EB22]
 - Use maliciously secure OT in the correlation generation protocol
 - Other parts remains unchanged as the semi-honest version

[Lau21] P. Laud, "Linear-time oblivious permutations for spdz", CANS 2021.

[EB22] S. Eskandarian and D. Boneh, "Clarion: Anonymous communication from multiparty shuffling protocols", NDSS 2022.

- Previous works [Lau21, EB22]
 - Use maliciously secure OT in the correlation generation protocol
 - Other parts remains unchanged as the semi-honest version
 - Selective failure attacks from the sender
 - An attack exploiting incorrect OPM from the receiver

[Lau21] P. Laud, "Linear-time oblivious permutations for spdz", CANS 2021.

[EB22] S. Eskandarian and D. Boneh, "Clarion: Anonymous communication from multiparty shuffling protocols", NDSS 2022.

- Incorrect correlations \rightarrow privacy breach
- Do perform well-formness check before using correlations

Our Solution

Offline Correlation Generation

Online Shuffle Malicioussecure CGP shuffle

Our Solution

Malicioussecure CGP shuffle

Our Solution

Malicioussecure CGP shuffle

Leakage reduction

- Two kinds of selective-failure attack
 - Offline Selective-failure attacks (from correlation check)
 - Online Selective-failure attacks (from MAC check)

Leakage reduction

- Two kinds of selective-failure attack
 - Offline Selective-failure attacks (from correlation check)
 - Online Selective-failure attacks (from MAC check)
- Intuition: repeated shuffle + check

• $\mathbf{y} = \pi_B \circ \pi_{B-1} \circ \cdots \circ \pi_2 \circ \pi_1(\mathbf{x})$

Leakage reduction

- Two kinds of selective-failure attack
 - Offline Selective-failure attacks (from correlation check)
 - Online Selective-failure attacks (from MAC check)
- Intuition: repeated shuffle + check

•
$$\boldsymbol{y} = \pi_B \circ \pi_{B-1} \circ \cdots \circ \pi_2 \circ \pi_1(\boldsymbol{x})$$

- Our contribution
 - A new cut-and-choose leakage reduction mechanism
 - A new combinatorial analysis method for the cut-and-choose game

Summary of Roadmap

Summary of Roadmap

Summary of Roadmap

Performance: Correlation Generation Phase

- Setting
 - LAN: 0.2 ms RTT, 1 Gbps
 - WAN: 80 ms RTT, 40 Mbps
- Optimizations
 - Generalized Benes Networks [CGP20]
 - Decompose a big permutation into many small ones
- Running time
 - 1.1-2.9x slower in the LAN setting
 - 1.01-2.3x slower in the WAN setting
- Communication
 - 20% more communication

Fig. 1 Running time for correlation generation

Protocol	2^{6}	27	2^{8}	2 ⁹	210	211	212
CGP	0.031	0.056	0.111	0.234	0.504	1.094	2.372
Ours	0.037	0.066	0.119	0.246	0.525	1.131	2.442

Tab. 1 Communication overhead for correlation generation (MB)

[CGP20] M. Chase, E. Ghosh, and O. Poburinnaya, "Secret-shared shuffle," ASIACRYPT 2020.

Performance: Shuffle Phase

Protocol	LAN						WAN						
	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	
Ours (2^4)	0.36	1.22	6.29	24.78	132.43	507.21	6.56	12.35	44.51	155.06	761.93	3,030.09	
Ours (2^6)	0.48	1.78	11.11	44.70	178.15	986.47	4.89	9.92	42.88	147.25	571.71	3,213.94	
Ours (2^8)	1.30	5.40	20.41	79.67	553.30	2,126.90	5.39	13.37	83.60	145.72	938.52	4,005.16	
Ours (2^{10})	1.68	18.44	76.84	273.84	1,125.21	4,578.25	4.33	26.49	91.04	345.30	1,365.92	5,853.09	
[4] (OT)	9.53	45.27	211.41	1,077.76	4,209.90	-	125.21	593.10	2,769.98	12,706.00	-	-	
[4] (HE)	4.73	17.81	79.36	357.64	1,610.24	-	59.26	90.71	427.87	1,978.11	9,056.06	-	

Tab. 2 Amortized offline running time (s)

Protocol	Offline							Online					
	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	
Ours (2^4)	7.03	27.8	155.17	620.34	3,189.88	12,759.18	1.06	4.26	23.86	95.42	490.73	1,962.93	
Ours (2^6)	4.76	18.76	124.65	498.16	1,992.38	11,156.93	0.49	1.97	13.11	52.43	209.72	1,174.41	
Ours (2^8)	4.98	19.73	78.71	314.64	2,097.22	8,388.68	0.39	1.57	6.29	25.17	167.77	671.09	
Ours (2^{10})	1.84	21.39	85.39	341.38	1,365.31	5,461.04	0.11	1.38	5.51	22.02	88.08	352.32	
[4] (OT)	1,757.43	8,561.07	40,193.90	184,763.00	835,816.00	-	1.37	6.65	31.33	144.18	652.22	2,910.86	
[4] (HE)	123.89	497.72	1,115.25	5,050.48	22,832.60	-	1.37	6.65	31.33	144.18	652.22	2,910.86	

Tab. 3 Amortized communication (MB) for offline and online phases

- Compared with the SSS protocol from MP-SPDZ library [Kel20]
 - ~15x faster in the offline phase
 - ~7x faster in the online shuffle phase

[Kel20] M. Keller, "MP-SPDZ: A versatile framework for multiparty computation," ACM CCS 2020

Conclusion

- Existing CGP shuffle protocols with malicious security are flawed
- Designing maliciously secure CGP shuffle protocol is non-trivial
- We propose correlation check and leakage reduction mechanisms to enable maliciously secure CGP shuffle protocol
- While increasing security, our enhancement introduces low overhead.

Thanks for your attentions!