LARMIX: LATENCY AWARE Routing in Mix Networks

Mahdi Rahimi **Piyush Kumar Sharma** Claudia Diaz

MIXNETS

- A type of anonymous communication network
- Routes traffic through multiple hops
 - Providing anonymity from a local traffic observer
- Introduces delay
 - \circ $\,$ Providing anonymity from the global traffic observer $\,$
- Multiple types
 - Cascade mixes, continuous mixes, threshold mixnets, etc.
- Recent deployments
 - \circ Nym network: Layered topology with poisson mixing

LATENCY IN MIXNETS!

- High latency limits the type of applications supported by mixnets
 - Can support latency tolerant applications: email, bitcoin transaction
 - Suffers in supporting: instant messaging, web browsing

Q: Can we reduce the latency in mixnets to facilitate support for wider range of applications?
 What impact will it have on anonymity?

TYPES OF LATENCY

- Mixing latency at each mixnode
 - Direct impact on anonymity

TYPES OF LATENCY

- Propagation latency
 - Indirectly impacts anonymity

WHICH LATENCY CAN WE MINIMIZE?

• Interested in minimizing propagation latency

WHICH LATENCY CAN WE MINIMIZE?

• Interested in minimizing propagation latency

LARMIX GOALS AND THREAT MODEL

- Develop methods to minimize propagation latency while minimizing impact on anonymity
- Provide a tunable parameter to control latency-anonymity tradeoff
 - Value 0 -> completely deterministic routing
 - \circ Value 1 -> uniform random routing
- Ensure balancing traffic load in the network

LARMIX OVERVIEW

- Developed approaches for a network designer:
 - \circ $\,$ To be used at different stages of the mixnet
 - \circ $% \ensuremath{\mathsf{Could}}$ be used independently or in conjunction
- Step 1: Arranging mixnodes to support the routing policy
- Step 2: Novel routing policy to enable faster routes
- Step 3: Balance the network load

• Step1: Cluster mixnodes based on location

- Step2: Arrange them in layers via a diversification algorithm
 - The algo facilitates geographical diversity of nodes in each layer that could be exploited by the routing policy

ROUTING POLICY

• We define a routing formula for selecting next hop • The formula returns probability distribution

$$\mathbb{P}[M^2 = m_j^2 | M^1 = m_i^1] = \frac{\left(\frac{1}{e}\right)^{R_i(j)\frac{(1-\tau)}{\tau}} \left(\frac{1}{l_{ij}}\right)^{(1-\tau)}}{\sum_k \left(\frac{1}{e}\right)^{R_i(k)\frac{(1-\tau)}{\tau}} \left(\frac{1}{l_{ik}}\right)^{(1-\tau)}}$$

- Tau = 0 results in deterministic next hop
- Tau = 1 results in uniformly selecting next hop

LOAD BALANCING

- Routing policy may create imbalanced load
- Need to ensure equal load on all mixnodes
- Identify the overloaded and underloaded nodes and rebalance the probability distribution.

LOAD BALANCING

- Greedy balancing:
 - Keep bias towards faster routes while balancing
 - Iterative
- Naive balancing:
 - \circ $\,$ Naively balance based on node capacity $\,$
 - \circ One shot

LARMIX: ROUTING + BALANCING

■ ■ Packets originating from cluster1 (green), cluster2 (blue) and cluster3 (orange) mixnodes

EVALUATION OVERVIEW

- Latency dataset used: RIPE anchor nodes delay measurement
- Performed two types of evaluation:
 - Analytical: A **novel approach** exclusively for routing evaluation
 - Simulations: For overall evaluation (routing + mixing)
- Metrics: latency (seconds) and anonymity (entropy)

RIPE ANCHOR LATENCY DATASET

EVALUATION SETUP AND PARAMETERS

Value	Parameter
Stratified	Input traffic
3	Target mess
384	Iterations
128	Number of a
50 ms	Clustering n
	Value Stratified 3 384 128 50 ms

Parameter	Value
Input traffic rate	10000 msgs per sec
Target messages	200
Iterations	400
Number of clusters (K)	5
Clustering method	K-medoids

EXPERIMENTS

Experiment	Variables	Results
Latency aware routing	Arrangement + Routing + Balancing	Entropy + Latency
Meeting end-to-end delay constraints	Network & Mix latency + Routing	Value of τ with max entropy
Varying network size	Network size + Routing + Balancing	Entropy + Latency

Arrangement = random, diversified, worst-case

Routing = Tau ranging from 0 to 1

Balancing = Imbalance, Greedy, Naive

RESULTS: ANALYTICAL

3.5x reduction in latency for 0.8 bit loss in entropy.

RESULTS: DELAY CONSTRAINTS

- Given a latency constraint:
 - What should be the division between mixing and propagation delay for maximizing anonymity?
 - 200ms constraint

τ	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1
Propagation Latency	68.0	68.0	<mark>68.0</mark>	<u>68.0</u>	69.0	71.0	75.99	95.0	121.0	139.0	150.0
Mixing Latency	44.0	44.0	44.0	44.0	43.6	43.0	41.3	35.0	26.3	20.3	16.6
Entropy	6.48	6.63	6.75	7.0	7.28	7.62	7.98	8.14	7.68	7.0	<mark>6.4</mark>

RESULTS: DELAY CONSTRAINTS

- Given a latency constraint:
 - What should be the division between mixing and propagation delay for maximizing anonymity?
 - 200ms constraint

For a given latency constraint, maximizing anonymity requires a sweet-spot between mixing and routing latency											
Propagation Latence	y		do				5.99	95.0	121.0	139.0	150.0
Mixing Latency	44.0	44.0	44.0	44.0	43.6	43.0	41.3	35.0	26.3	20.3	16.6
Entropy	6.48	6.63	6.75	7.0	7.28	7.62	7.98	8.14	7.68	7.0	6.4

SECURITY ANALYSIS

- Adversary
 - Global
 - \circ Subset of mixnodes
 - \circ Global + subset of mixnodes
- Metrics
 - Fraction of Corrupted Paths (FCP)
 - Entropy
- Experiments
 - FCP vs Tau
 - \circ $\,$ FCP vs fraction of corrupted mixnodes $\,$
 - Entropy vs Tau

SECURITY ANALYSIS: TYPES OF MIXNET ADVERSARY

Single Location

Multiple Location

SECURITY ANALYSIS: TYPES OF MIXNET ADVERSARY

SECURITY ANALYSIS: FCP VS TAU

- Corruption: 20%
- Worst case = high FCP
 practically impossible
- Single location adversary doesn't provide unprecedented advantage

COMPARISON WITH SIMPLER APPROACH

Parameter	2-layer random routing	3-layer LARMix
Analytical Latency	46.9 ms	34.5 ms
Simulation Latency	170.2 ms	150.3 ms
Simulation Anonymity	7.7 bits	8.8 bits

CONCLUSION

- Latency incurred by mixnets limits usage
- Developed LARMix, a latency-aware routing algorithm for mixnets
- Minimizes latency with limited anonymity impact all while ensuring load balancing
- Extensive evaluation demonstrates practicality
- Implementation code: public for reusability

APPENDIX

METRICS

- Analytical
 - Latency: Average link delay across all possible paths
 Multiplied by the probability of selecting those paths
 - Anonymity: Entropy of mapping output mixnode to the input mixnode
- Simulation
 - Latency: Average link delay + mixing delay of sampled messages
 - Anonymity: Entropy of mapping output messages to the input messages

RESULTS: SIMULATION

60% reduction in latency for 0.3 bits loss in entropy.

COMPARISON WITH STATE-OF-THE-ART IN TOR (CLAPS)

