

LoRDMA: A New Low-Rate DoS Attack in RDMA Networks

Shicheng Wang¹, Menghao Zhang², Yuying Du³, Ziteng Chen⁴, Zhiliang Wang¹, Mingwei Xu¹, Renjie Xie¹, Jiahai Yang¹

1. Tsinghua University 2. Beihang University 3. Information Engineering 4. Southeast University

University

RDMA network

- RDMA (Remote Direct Memory Access) is becoming an attractive trend
 - Access remote host memory directly without CPU intervention
 - High bandwidth:10/40~100/400Gbps
 - Low delay: <100us

RDMA network

- RDMA (Remote Direct Memory Access) is becoming an attractive trend
 - Access remote host memory directly without CPU intervention
 - High bandwidth:10/40~100/400Gbps
 - Low delay: <100us
 - Application scenarios
 - Distributed machine learning
 - Distributed cloud storage
 - Search queries

• Priority Flow Control (PFC)

- Priority Flow Control (PFC)
 - When **busy**, send **PAUSE** frame
 - Ingress queue length > $X_{OFF} \rightarrow PAUSE$

- Priority Flow Control (PFC)
 - When **busy**, send **PAUSE** frame
 - Ingress queue length > $X_{OFF} \rightarrow PAUSE$

- Priority Flow Control (PFC)
 - When **busy**, send **PAUSE** frame
 - Ingress queue length > $X_{OFF} \rightarrow PAUSE$
 - When not **busy**, send **RESUME** frame
 - Ingress queue length < $X_{ON} \rightarrow RESUME$

- Priority Flow Control (PFC)
 - When **busy**, send **PAUSE** frame
 - Ingress queue length > $X_{OFF} \rightarrow PAUSE$
 - When not **busy**, send **RESUME** frame
 - Ingress queue length < $X_{ON} \rightarrow RESUME$

- Hop-by-hop congestion spread
 - Head-of-line blocking

- Hop-by-hop congestion spread
 - Head-of-line blocking

- Hop-by-hop congestion spread
 - Head-of-line blocking
 - Unfair victim flows
 - F1 and F4 are victim flows

- Hop-by-hop congestion spread
 - Head-of-line blocking
 - Unfair victim flows
 - F1 and F4 are victim flows
 - PAUSE storm, deadlock...

- Hop-by-hop congestion spread
 - Head-of-line blocking
 - Unfair victim flows
 - F1 and F4 are victim flows
 - PAUSE storm, deadlock...

SW1

F3

SW3

PAUSE

SW5

Congested

- End-to-end congestion control schemes
 - Detect the congestion and adjust the flow rate
 - DCQCN[SIGCOMM 2015]: the *de facto* standard

- End-to-end congestion control schemes
 - Detect the congestion and adjust the flow rate
 - DCQCN[SIGCOMM 2015]: the *de facto* standard

- End-to-end congestion control schemes
 - Detect the congestion and adjust the flow rate
 - DCQCN[SIGCOMM 2015]: the de facto standard

- End-to-end congestion control schemes
 - Detect the congestion and adjust the flow rate
 - DCQCN[SIGCOMM 2015]: the de facto standard

- PFC still spreads congestion
 - SW3.P2 & SW4.P2 are congested by PFC

- PFC still spreads congestion
 - SW3.P2 & SW4.P2 are congested by PFC
- DCQCN is misled and cuts F1 & F4 wrongly (
 - Queue length signal can be falsified by PFC
 - F1 and F4 are cut due to high queue length at SW3 & SW4

- Bursts *indirectly* cut flows via PFC
 - Direct victims: F2&F3 congested at SW5.P4
 - Indirect victims: F1&F4 sharing no link with bursts (33)

- Bursts *indirectly* cut flows via PFC
 - Direct victims: F2&F3 congested at SW5.P4
 - Indirect victims: F1&F4 sharing no link with bursts (33)
- Higher burst rate δ makes severer rate cut ΔR

- Bursts *indirectly* cut flows via PFC
 - Direct victims: F2&F3 congested at SW5.P4
 - Indirect victims: F1&F4 sharing no link with bursts (33)
- Higher burst rate δ makes severer rate cut ΔR^{0}
 - Higher $\delta \rightarrow$ More PAUSE \rightarrow Heavier congestion

SW1

SW2

Ρ1

— Р1

F1

F2

F3

F4

F1-F4

cut rate

S4

SW3

PAUSE

A1

P1

Ρ1

SW4

SW5

An

- Long performance loss due to AIMD rate control
 - ~1ms burst \rightarrow 10s of ms rate recovery

- Long performance loss due to AIMD rate control^{(s1}) (s2)
 - ~1ms burst \rightarrow 10s of ms rate recovery
 - $-PL = \int_{T} (R_0 R(t)) dt \rightarrow$ Shadowed area

- Short bursts cause significant performance loss
- Diminishing marginal return of PL on τ
 - Direct victims: linear increase in PL
 - Indirect victims: no more increase in PL

- Short bursts cause significant performance loss
- Diminishing marginal return of PL on τ
 - Direct victims: linear increase in PL
 - Indirect victims: no more increase in PL

Principles for a low-rate DoS attack

- Cover more victim flows with fewer congestion points
 - Indirectly cover more flows for lower direct queue contention
 - **Burst rate** δ should put sufficient **rate cut** ΔR on indirect victim flows
- A trade-off between performance loss and burst duration
 - Too long **burst duration** τ makes no further gain, but only high cost
 - Minimum **burst duration** τ for sufficient *PL*

Threat model

- Shared RDMA network infrastructure
 - Multiple users (malicious and benign) in the same network
- Attacker's capability
 - Traffic crafting: High-rate burst and probing traffic
- Attacker's knowledge
 - Network topology
 - Target flow set: A specific set of flows to cut off (Can be relaxed)
- Attacker's goal: **Efficient** attack
 - High impact: Cover more target flows; cause high performance loss
 - Low cost: Low burst rate δ and short duration τ

Challenges for an efficient attack

- Cover more target flows efficiently
 - Which target port/link to congest?
 - Generalized maximum coverage is NP hard

Challenges for an efficient attack

- Cover more target flows efficiently
 - Which target port/link to congest?
 - Generalized maximum coverage is NP hard
 - What δ should be deployed for a specific target port?
 - Relationship between ΔR and δ is unknown for attackers

Challenges for an efficient attack

- Cover more target flows efficiently
 - Which target port/link to congest?
 - Generalized maximum coverage is NP hard
 - What δ should be deployed for a specific target port?
 - Relationship between ΔR and δ is unknown for attackers
- Cause high performance loss efficiently
 - Too long burst duration makes attack inefficient
 - Relationship between PL and τ is unknown for attackers

LoRDMA attack

- Coordination
 - Greedily select the highest-heuristic-value port to attack
 - Adaptively deploy bots until sufficient rate cut ΔR achieves
- Schedule
 - Adaptively adjust burst duration τ until an efficient trade-off between PL and τ achieves

RTT: A key signal reflecting congestion

• RTT is highly related to queue length

– Estimate the congestion severity (ΔR) and the end-time (*PL*)

RTT: A key signal reflecting congestion

- RTT is highly related to **queue length**
 - Estimate the congestion severity (ΔR) and the end-time (*PL*)
- RTT prober
 - Connection request and rejection reply: A new side-channel signal
 - Monitor the long-term RTT to estimate the congestion

No. Time Source Destination Protocol Length Info 1 0.000000 192.168.3.135 192.168.3.136 RRoCE 322 CM: ConnectRequest 2 0.000051 192.168.3.136 192.168.3.135 RRoCE 322 CM: ConnectRequest	<u> </u>							
1 0.000000 192.168.3.135 192.168.3.136 RRoCE 322 CM: ConnectRequest 2 0.000051 192.168.3.136 192.168.3.135 RRoCE 322 CM: ConnectRequest	No.	Time	Source	Destination	Protocol	Length	Info	
2 0.000051 192.168.3.136 192.168.3.135 RRoCE 322 CM: ConnectReject	1	0.000000	192.168.3.135	192.168.3.136	RRoCE	322	CM:	ConnectRequest
	2	0.000051	192.168.3.136	192.168.3.135	RRoCE	322	CM:	ConnectReject

- Greedily select target port
 - Select the port to cut more flows indirectly

- Greedily select target port
 - Select the port to cut more flows indirectly

- Greedily select target port
- Adaptively add bots
 - Indirect victims (F1&F4) should suffer as *severely* as direct ones (F2&F3)!

How many bots with line rate should I use?

- Greedily select target port
- Adaptively add bots
 - Indirect victims (F1&F4) should suffer as *severely* as direct ones (F2&F3)!

- range
$$\langle RTT_i \rangle \cong$$
 range $\langle RTT_d \rangle$

How many bots with line rate should I use?

• Longer burst makes lower gain

- PL_i hardly grows with burst duration τ

How long should the burst last?

- Longer burst makes lower gain
 - PL_i hardly grows with burst duration τ
 - Trim off the burst duration with low $< RTT_i >$

How long should the burst last?

Implementation

- Implementation
 - Attack tools: Burst generator, RTT prober
 - NS-3 simulation
- Experiment setup
 - Real testbed: Kuaishou cloud RDMA cluster (2 Leaf, 4 ToR, 8 RNIC 100Gbps)
 - Large-scale simulation: NS-3
- Goal of evaluation
 - Performance of the coordination and schedule
 - Attack impact on large-scale RDMA applications
 - Attack impact on real testbed

- Higher attack performance
 - Higher victim flow coverage
 - Higher rate cut ΔR

(a) Victim flow coverage at Carnet, Switch and Cernet, respectively.

(b) Average ΔR at Carnet, Switch and Cernet, respectively.

- Higher attack performance
 - Higher victim flow coverage
 - Higher rate cut ΔR

(c) Directly congested queue number at Carnet, Switch and Cernet, respectively.

- Lower attack cost
 - Fewer directly congested points
 - Fewer directly congested flows

- Higher attack efficiency
 - Efficient attack parameter across various background traffic
- Sufficient attack impact
 - Sufficiently high impact across various background traffic

(a) Attack efficiency as τ changes with different background traffic scenarios.

(b) Attack impact as τ changes with different background traffic scenarios.

Impact on real applications

- Simulation setup
 - Fat-tree (k=8) topology
 - Workload:
 - W1: machine learning training
 - W2: cloud storage

Impact on real applications

- Simulation setup
 - Fat-tree (k=8) topology
 - Workload:
 - W1: machine learning training
 - W2: cloud storage
- Impact on coflow-completiontime (CFCT)
 - Median damage on CFCT: 8.11% ~ 52.7%, averaging at 25.2%
 - Maximum damage on CFCT: 29.1% ~ 251.6%, averaging at 65.47%

(a) Co-flow completion time impact (b) Co-flow completion time impact ratio of distributed machine learning ratio of cloud storage with a low flow training with a low flow number.

(c) Co-flow completion time impact (d) Co-flow completion time impact ratio of distributed machine learning ratio of cloud storage with a high training with a high flow number. flow number.

Real testbed

- Attack tools validation
 - Line-rate burst generation
 - RTT reflecting the congestion

Real testbed

- Attack tools validation
 - Line-rate burst generation
 - RTT reflecting the congestion
- Real application impact
 - NCCL TEST:
 - 18.23% (AlltoAll) to 56.12% (AllGather)
 - PFC misleads DCQCN

(a) Performance of different commu- (b) PFC and CNP count over time. nication primitives.

Conclusions

- RDMA is less secure in transport control
 - PFC and DCQCN can be exploited to cut flows across multiple hops
 - Drastic performance loss can be caused by short-duration bursts
- LORDMA: a new low-rate DoS attack
 - Coordinate & schedule for an efficient attack solution
- Evaluations demonstrate the effectiveness and efficiency
 - Large-scale simulation & real testbed

Thanks for your attention! Q & A

wsc22@mails.tsinghua.edu.cn

Backup: Possible defense schemes

- PFC-driven network performance anomaly diagnosis
 - Root cause flows (bursts) are hops away from victims
 - No significant contribution to the **local** queue contention
 - Analyze the PFC spreading causality to find the culprits
- Fine-grained burst monitor
 - ms-/us-level burst requires fine granularity
 - A trade-off between effectiveness and overhead