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Machine learning as a service
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What if users “regret”?

Users
“I want my data to be deleted”
• Data privacy
• Data security
• Control over personal information
• Past mistakes or embarrassing information
• Legal requirements, e.g., GDPR
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Machine unlearning
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Very close!

Removing the inference of unlearned data efficiently and effectively 
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Machine unlearning services
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Where could problems occur?

• What can be wrong if there is an unlearning user submitting 
potential malicious deletion requests?

• What consequence malicious deletion requests can bring?

ServerDeletion request

Model unlearning

Unlearning
users
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Normal unlearning vs. over-unlearning

Trained 
Model

Unlearned 
Model

Unlearning 
normal data

Normal unlearning
• Data is deleted
• Model utility is preserved 

or slightly reduced

Trained 
Model

Unlearned 
Model

Unlearning well-
crafted dataOver-unlearning threat

• More information is 
deleted than expected!

• Model utility suddenly 
deteriorates Generate

Malicious unlearning user
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Technique challenges: how to achieve over-
unlearning?

• Difficult to quantify how much information 
is contained in a data point 

• Difficult to quantify how a data point may 
influence the model
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Blending as naïve over-unlearning
• Intuition: Incorporate additional sample (xb) 

information into the unlearned sample (x) via 
blending

• 𝑥𝑥′ = 𝑎𝑎 ⋅ 𝑥𝑥 + 1 − 𝑎𝑎 ⋅ 𝑥𝑥𝑏𝑏; 𝑎𝑎 is a blending 
parameter

Unlearned sample Additional sample Blended sample

0.5 +0.5 =
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Pushing as advanced over-unlearning

Class I
Class II

Point B 

Point A
Key intuition: Points near 
the decision boundary is 
more informative than the 
points far away from that

Decision
boundary
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Two pushing strategies

• Pushing-I: push the unlearned sample near the decision boundary 
but not across it.

Class I
Class II

Class III

original unlearned 
sample
crafted unlearned 
sample
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Two pushing strategies

• Pushing-II: push the unlearned sample just across the decision 
boundary.

Class I Class II

Class III

original unlearned 
sample
crafted unlearned 
sample
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How to achieve Pushing?
• Moving a sample towards the decision boundary is well studied in 

adversarial example attacks.
• We use black-box adversary attack techniques to achieve pushing

f(x)>0

f(x)<0 x0

x0+ 𝛿𝛿  

Pushing implementation
• 𝑥𝑥′ = 𝑥𝑥 + 𝛿𝛿; add small perturbation to 
the original unlearned sample
• 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥′, θ) < 𝜀𝜀; ensure the crafted 
sample is close enough to the decision 
boundary of the model θ
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Experimental setup
• Utility metric: accuracy of the model
• Baseline: normal unlearning
• Unlearning method: approximate unlearning methods
• Number of unlearned sample: no more than 50% of a class
• Blending: how blending “B” to “A” influences the model’s 

accuracy on “B”
• Pushing: how moving “A” to the decision boundary 

influences the model’s accuracy on “A”
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Is Blending effective?
• Blending is not stable for over-unlearning
• Hypothesis: blending does not change the decision 

boundary of the model too much through unlearning

Dataset % of unlearned 
samples

Blending ratio Acc_N - Acc_O

CIFAR-10 10% 0.5 1.4%

CIFAR-100 10% 0.5 <0

STL-10 10% 0.5 <0

o Experimental setting: unlearn samples of one class;
o % of unlearned samples: percentage of the unlearned samples on the class;
o Acc_N: accuracy of the normal unlearned model on the class;
o Acc_O: accuracy of the over-unlearned model on the class.
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Is Pushing effective?
• Pushing is always effective!
• Data points close to decision boundary are 

important in unlearning!
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Pushing can be more dangerous than just utility reduction!
• What if pushing the unlearned samples to a particular 

decision region?

Class I

Class II
Class III

original unlearned 
sample
crafted unlearned 
sample
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The “controlled” misclassification
• Class A: the label of the unlearned data
• Class B: the “target” label, i.e., moving all the unlearned 

samples to near the decision boundary of class B
• Pushing can make the unlearned model misclassify 

samples of A (1,000 in total) to B!

Status Class A Class B
Before unlearning 878 0
Normal unlearning 708 5 (A->B)
Pushing-I 26 378 (A->B)
Pushing-II 31 247 (A->B)
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Takeaways
• Pushing is a reliable and effective way for over-

unlearning. Data points near the decision 
boundary have high impact on machine 
unlearning.

• A larger number of unlearned samples enable 
more effective over-unlearning.

• Model’s behaviour might be “controlled” through 
over-unlearning.
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Discussion
• Possible defence

• Hashing as a possible defence
• Membership inference
• Anomaly detection

• Can over-unlearning be success in exact unlearning?
• Possible! Maybe through poisoning.

• More than model utility!
• How malicious unlearning may affect model 

robustness?
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Discussion
• Possible defence

• Hashing as a possible defence
• Membership inference
• Anomaly detection

• Can over-unlearning be success in exact unlearning?
• Possible! Maybe through poisoning.

• More than model utility!
• How malicious unlearning may affect model 

robustness?
Thank you for your attention!

Questions?
Hongsheng. Hu@csiro.au
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