

Unus pro omnibus

Multi-Client Searchable Encryption via Access Control

Jiafan Wang

Commonwealth Data61, CSIRO Scientific and Industrial Research Organisation

Sherman S. M. Chow

Info. Engg., CUHK Information Engineering Chinese University of Hong Kong

#NDSSSymposium2024

(Secure) Mobile Cloud Applications

- Store ever-growing data from individuals and companies
 - relieve the need for local storage/software

(Secure) Mobile Cloud Applications

- Store ever-growing data from individuals and companies
 - relieve the need for local storage/software
- Manifest as collaborative platforms
- Catalyse novel contributive applications
 - sensor network for crowdsourcing
 - machine learning
 - collective intelligence

Collecting & Utilizing Data with the Cloud

- Each of many clients can take the role of
 - writer who contributes/updates files
 - reader who retrieves/searches for files of interest

Collecting & Utilizing Data with the Cloud

- Each of many clients can take the role of
 - writer who contributes/updates files
 - reader who retrieves/searches for files of interest
- We focus on fundamental keyword search
 - cover general query-response [Lai-Chow17]
 - each file has a set of keywords
 - "files of interest"
 - = those contain a specific keyword reader

writer

Secure Data Outsourcing

- Cloud servers are untrustworthy
- Outsourced data are sensitive
 - e.g., data breach of medical records or credit card information

Secure Data Outsourcing

- Cloud servers are untrustworthy
- Outsourced data are sensitive
- Standard encryption hinders data retrieval
 - download all \rightarrow decrypt locally \rightarrow naïve *linear* scan
 - no multi-client support

Searching Encrypted Data in the Cloud

Searchable Symmetric Encryption (SSE) [SWP00, CGK006, KPR12]

✓ Sublinear search

- index data for optimal search time
- Forward privacy [Bost16, Lai-Chow17]
 - updates can't be searched by old search tokens
 - upon any related search, "update" update tokens
 - update "changed" so old search token won't work
- **x** No multi-client support
 - writer = reader = secret-key owner
 - symmetric setting hinders multi-writer

Searching Encrypted Data in the Cloud

Public-key Encryption with Keyword Search (PEKS) [BDOP04]

✓ Multiple writers for a reader

- no secret-key distribution
- no synchronous communication
- x Often require linear testing
 - challenging to jointly index with no shared secret/coordination
- Kert Hard to be forward private
 - writers don't know search state from reader
 - nor when to "change" update tokens

Hybrid Searchable Encryption [Wang-Chow22]

1st non-trivial attempt towards the best of SSE [SWP00] & PEKS [BDOP04]

✓ Multiple writers for a single reader

- "All for One" ("Omnes pro uno")
- access writers' SSE tokens via PEKS
- ✓ Sublinear search
 - PEKS.Search for tokens + SSE.Search for files
 - PEKS from *ID-Coupling Key-Aggregate Enc.*
- Forward privacy (per epoch)
 - synchronize writers with a global clock
 - writers rebuild (per epoch) for fast search

"One for All": Delegatable Searchable Encryption

SSE	PEKS	HSE
✓ Sublinear/optimal search	✓Multi-writer support	✓ Sublinear search (not optimal)
✓ Forward privacy	★ Linear Search	✓ Multi-writer support
★ No multi-client support	★ No forward privacy	✓ Confined forward privacy
		(epoch + rebuild)

DSE: A New Notion Advancing Searchable Encryption

- ✓ Standard Forward Privacy
- ✓ Search is Optimal Asymptotically
- ✓ Multi-Writer Multi-Reader Support
- ✓ Construction allows Extensibilities

A data owner initializes the global state and empty database

- A data owner initializes the global state and empty database
- Simple one-time (token) delegation (per client) by the data owner
 - grant keyword-specific updating and/or searching rights

A client becomes a writer and/or reader of specific keywords

- A client becomes a writer and/or reader of specific keywords
 - make updates and/or searches on these keywords
 - without the help of the data owner

- A client becomes a writer and/or reader of specific keywords
 - make updates and/or searches on these keywords
 - without the help of the data owner
- Delegation makes *joint indices* feasible, boosting searches

16/40

DSE Threat Models

- Server and some clients are possibly corrupted and collusive
- Maintain data privacy and integrity for the trusted data owner
- Clients with searching/updating rights pose an "orthogonal" threat
 - Ieakage to an honest server + corrupted clients could be less

- Forward privacy: search token can't work for any future update
 - siven the updated keyword not delegated to any corrupt client
 - any update hides anything w.r.t. non-corrupt keywords

- Forward privacy: search token can't work for any future update
 - siven the updated keyword not delegated to any corrupt client
 - any update hides anything w.r.t. non-corrupt keywords
 - a usual trick in SSE: state maintenance (per keyword) on the client side

- Forward privacy: search token can't work for any future update
 - siven the updated keyword not delegated to any corrupt client
 - any update hides anything w.r.t. non-corrupt keywords
 - a usual trick in SSE: state maintenance (per keyword) encrypted on the server

- Forward privacy: search token can't work for any future update
 - siven the updated keyword not delegated to any corrupt client
 - any update hides anything w.r.t. non-corrupt keywords

- Integrity: malicious clients can't tamper with the database
 - new concern in DSE to make clients behave themselves
 - ensure correct modification of the global state
 - Iater searches by honest clients can locate others' updates in the right places

- A tailor-made *homomorphic* encryption for a set of messages
 - > *shiftable*: homomorphic shifting can be publicly computed

$\langle \mathbf{x} \rangle$		TAR	
8	4	2	7
9	5	2	7

- A tailor-made homomorphic encryption for a set of messages
 - shiftable: homomorphic shifting can be publicly computed
 - > expandable: more recipients can be included (with new secret keys)

2		The		X
8	4	2	7	
9	5	2	7	
9	5	2	7	0

- A tailor-made homomorphic encryption for a set of messages
 - shiftable: homomorphic shifting can be publicly computed
 - > expandable: more recipients can be included (with new secret keys)
 - shift non-committing: ciphertexts can be simulated without knowing the shifted messages and the shifted offsets

		The second		×.
?	?	?	?	
?	?	?	?	
?	?	?	?	0

- A tailor-made homomorphic encryption for a set of messages
 - shiftable: homomorphic shifting can be publicly computed
 - > expandable: more recipients can be included (with new secret keys)
 - shift non-committing: ciphertexts can be simulated without knowing the shifted messages and the shifted offsets
 - can "explain" (previously) simulated ciphertexts when the key is revealed

		SAR.		X
?	?	?	?	
?	?	?	?	
?	?	?	?	0

- A tailor-made homomorphic encryption for a set of messages
 - shiftable: homomorphic shifting can be publicly computed
 - expandable: more recipients can be included (with new secret keys)
 - Shift non-committing: ciphertexts can be simulated without knowing the shifted messages and the shifted offsets
- Efficient SME construction
 - from randomness-reusing ElGamal encryption
 - *non-committing* proven under the generic group model
 - synchronize updates via the global state for standard forward privacy

- Data owner sets up the DSE system with a master key
 - an SME instance, with each ctxt slot corresponding to one keyword
 - SME ctxt to encrypt update counters of each keyword
 - multiple IBE instances, each corresponding to one keyword
 - (Anonymous Identity-Based Encryption implies PEKS)
 - to encrypt documents for each keyword, using its search counter as identity
 - pseudorandom function PRF to locate addresses for tuples

- Global state (Uctr: <u>update counters</u>; Sctr: <u>search counters</u>)
 - public keys + SME-encrypted Uctr + Sctr (in plain, & "pseudonym" of keyword)

- Global state (Uctr: update counters; Sctr: search counters)
 - public keys + SME-encrypted Uctr + Sctr (in plaintext, pseudonym)
- Data owner provides keyword-specific keys to clients
 - O: SME secret key + PRF secret key + IBE secret key
 - SME secret key + PRF secret key (PRF operates over Index Key (IK))

- To insert a new tuple (>>>>, Fid), a writer outputs
 - > addr as PRF(IK, Uctr[2] + 1), with IK = PRF(Sctr[2]), Uctr from SME
 - val as IBE(Fid, Sctr[)) using) is IBE instance
- The writer also outputs SME-encrypted offset

- To insert a new tuple (>>>>, Fid), a writer outputs
 - > addr as PRF(IK, Uctr[2] + 1), with IK = PRF(Sctr[2]), Uctr from SME
 - val as IBE(Fid, Sctr[)) using) is IBE instance
- The writer also outputs SME-encrypted offset
- The server stores val at addr and shifts SME ctxt

- To search for is a reader outputs
 - Decryption key DK for is IBE instance, w.r.t. Sctr[i]
 - \geq Index key IK for PRF as IK = PRF(Sctr[$\frac{1}{2}$])
 - Uctr[3], by decrypting the corresponding slot of SME ctxt

- To search for <u>i</u>, a reader outputs
 - Decryption key DK for is IBE instance, w.r.t. Sctr[i]
 - > Index key IK for PRF as IK = PRF(Sctr[$\frac{1}{2}$])
 - Uctr[3], by decrypting the corresponding slot of SME ctxt
- The server retrieves entries with IK, decrypts them with DK

- To search for <u>i</u>, a reader outputs
 - Decryption key DK for is IBE instance, w.r.t. Sctr[i]
 - > Index key IK for PRF as IK = PRF(Sctr[$\frac{1}{4}$])

- To search for <u>i</u>, a reader outputs
 - Decryption key DK for is IBE instance, w.r.t. Sctr[i]
 - > Index key IK for PRF as IK = PRF(Sctr[$\frac{1}{4}$])
 - Uctr[3], by decrypting the corresponding slot of SME ctxt
- The server retrieves entries with IK, decrypts them with DK

Security Analysis of DSE-F

- Update leaks nothing of non-corrupt keywords
- IBE.Enc and PRF IK are w.r.t current search & update counter
- Standard forward privacy

DSE-I: Instrument for Integrity

- Any search or update comes with a proof
 - using commitment [Pedersen91] and argument of knowledge [LMR19]
 - update: prove SME ctxt is correctly shifted
 - search: prove IBE DK and PRF IK are generated w.r.t correct Sctr

Experimental Evaluations

- Enron: 510K e-mails from 146 employees from 1999 to 2002
 - each client has an average of 460 keywords and 3493 emails
 - each client updates per month; regular searches per half year
 - amortize rebuild time (per half year) into HSE update time

Summary of Ideas

- One-time delegation to grant reading and/or writing ability
 - with respect to a keyword by the data owner
- Global state for synchronization needed for forward privacy
 - Maintained by shiftable multi-recipient non-committing encryption (SME)
 - Forward privacy is now possible without client interactions
- Jointly build and retrieve one index
 - Instead of adding a public-key layer over multiple indexes in HSE
 - Multi-writer multi-reader with sublinear search

Conclusion and Future Work

jiafan.wang@data61.csiro.au *sherman*@ie.cuhk.edu.hk

DSE-F and DSE-I

- Adaptively secure
- Forward-private
- DSE-I achieves integrity (with overhead)
- Versatility and Extensibility
 - Extended defence: backward privacy, volume hiding, mitigating keyword guess
 - Optimized efficiency: fewer public-key operations via HSE-like hybrid technique
 - See the paper for more

	SSE	PEKS	HSE	DSE
Sublinear Search	✓	×	✓	✓
Standard Forward Privacy	✓	×	×	✓
Multiple Clients	×	W	W	W/R