
Bernoulli Honeywords

Coby Wang Michael K. Reiter

Visa Research Duke University

1
* Coby participated in this research while at Duke University

Credential Abuse across Sites

2

The Colonial Pipeline Attack (May 2021)

Credential Abuse across Sites

3

The Colonial Pipeline Attack (May 2021)

An employee from a company reused a

complicated password across his/her company VPN
account and an account at a different website.

Password
reuse

Credential Abuse across Sites

4

The Colonial Pipeline Attack (May 2021)

An employee from a company reused a

complicated password across his/her company VPN
account and an account at a different website.

Password
reuse

Breached
passwords

The password got leaked when the other website

was breached.

Credential Abuse across Sites

5

The Colonial Pipeline Attack (May 2021)

Password
reuse

Breached
passwords

Credential
stuffing

An attacker stuffed the leaked password

at the employee’s VPN account …

Credential Abuse across Sites

6

The Colonial Pipeline Attack (May 2021)

Password
reuse

Breached
passwords

Credential
stuffing

Account
takeovers

… and took over the VPN account, getting

access to the company’s internal network.

The attacker disabled part of the company’s
network and asked for $5M in ransom to
recover it.

Credential Abuse across Sites

7

The Colonial Pipeline Attack (May 2021)

Password
reuse

Breached
passwords

Credential
stuffing

Account
takeovers

“The closure saw supplies of diesel, petrol and jet fuel tighten
across the US, with prices rising, an emergency waiver passed on
Monday and a number of states declaring an emergency.”

 -- BBC

Where to Tackle this Problem?

8

Credential
stuffing

Breached
passwords

Password
reuse

Account
takeovers

Our work

Web Server
Credential Database

UID: alice@gmail.com

password2

Password*:

password3

password4

password1

password5

Decoy passwords
(honeywords) are
generated based
on the real one.

Real user password

* Assuming that attacker can reverse all leaked password (salted) hashes offline,
Here we ignore the use of hashing (and salting) for simplicity.

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

???

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

???

Wait … How can the
defender determine
whether a given
password (in the list)
should result in a
successful login or a
breach alarm?

Honeywords
(Juels & Rivest 2013)

Asymmetric Design

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5
2 is real

Attacker
Knowledge

Defender
Knowledge

Honeychecker
(Juels & Rivest

2013)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

<

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

Symmetric Design

Attacker
Knowledge

Defender
Knowledge

Amnesia
(Wang &

Reiter 2021)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

=

Asymmetric vs. Symmetric

password2

password3

password4

password1

password5

2 is real

Breach Attacker knowledge

<

Defender knowledge (in the form of
persistent storage)

Example: Honeychecker (Juels & Rivest 2013)

password2

password3

password4

password1

password5

Breach Attacker knowledge

=

Defender knowledge (in the form of
persistent storage)

Example: Amnesia (Wang & Reiter 2021)

Asymmetric vs. Symmetric

password2

password3

password4

password1

password5

2 is real

Breach Attacker knowledge

<

Defender knowledge (in the form of
persistent storage)

Example: Honeychecker (Juels & Rivest 2013)

password2

password3

password4

password1

password5

Breach Attacker knowledge

=

Defender knowledge (in the form of
persistent storage)

Example: Amnesia (Wang & Reiter 2021)

False Positives (= False Breach Alarms)

• Balancing false positives and false negatives in honeyword selection is
notoriously difficult
• Honeywords too similar to the user-selected password

 attacker who knows that password can trigger false alarms

• Honeywords not similar enough to the user-selected password

 attacker who knows information about this user can avoid true alarm

• Most research has emphasized improving the true alarm rate
• We believe this has been a mistake

16

Reasons to Focus on Reducing False Alarms

1. We only need to catch the attacker at one account—and usually the
attacker wants to harvest many
• So, a low true alarm rate per account can still be useful

2. Breach alarms are expensive!
• IBM put the average cost of a breach detection and escalation at $1.24 million

3. Without quantifying false alarms, admins will ignore alarms
• See the Tripwire study [DeBlasio, Savage, Voelker, and Snoeren 2017]

17

Bernoulli Honeywords

18

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

Web Server
Credential Database

UID: alice@gmail.com

Password:

Web Server
Credential Database

Entire password
space

Bernoulli Honeywords

19

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

Web Server
Credential Database

UID: alice@gmail.com

Password:

Web Server
Credential Database

Each incorrect password is chosen
as a honeyword according to a

Bernoulli process

Bernoulli Honeywords

20

UID: alice@gmail.com

Password:

Web Server
Credential Database

Questions:
• How to efficiently sample and store

honeywords from the entire password space?

• How to efficiently determine whether a login
attempt has a correct, incorrect, or decoy
password?

• How to allow easy parameterization of
Bernoulli honeywords?

Each incorrect password is chosen
as a honeyword according to a

Bernoulli process

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4

Test membership of “alice”

? ? ? f3(h(“alice”)) = 10

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Test membership of “alice”
All slots fi(h(“alice”)) = 1, and so
membership is confirmed

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4
f3(h(“alice”)) = 10

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Test membership of “alice”

? ? ?

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4
f3(h(“alice”)) = 12

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Test membership of “alice”
Some slot fi(h(“alice”)) = 0, and so
membership is refuted

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4
f3(h(“alice”)) = 12

Bernoulli Honeywords

26

Bloom Filter

1

0
2

0
5

0
7

0
11

0
12

0
3

0
4

0
6

0
8

0
9

0
10

0

Bernoulli Honeywords

27

Bloom Filter

1

0
2

0
5

0
7

0
11

1
12

0
3

1
4

0
6

1
8

0
9

0
10

0

User-chosen password

If integrated with a
Honeychecker:

3, 6, 11

Bernoulli Honeywords

28

Bloom Filter

1

0
2

1
5

0
7

0
11

1
12

0
3

1
4

1
6

1
8

1
9

1
10

0

Randomly flip a certain # of bits

If integrated with a
Honeychecker:

3, 6, 11

Bernoulli Honeywords

29

Bloom Filter

1

0
2

1
5

0
7

0
11

1
12

0
3

1
4

1
6

1
8

1
9

1
10

0

If a submitted password is

• In the BF & with indices 3, 6, 11 → Successful login

• In the BF & with ≥ one index not being 3, 6, or 11 → Breach alarm

• Not in the BF → Failed login

If integrated with a
Honeychecker:

3, 6, 11

Bernoulli Honeywords

30

Bloom Filter

1

0
2

1
5

0
7

0
11

1
12

0
3

1
4

1
6

1
8

1
9

1
10

0

If a submitted password is

• In the BF & with indices 3, 6, 11 → Successful login

• In the BF & with ≥ one index not being 3, 6, or 11 → Breach alarm

• Not in the BF --> Failed login

If integrated with a
Honeychecker:

3, 6, 11

These passwords are

 Bernoulli honeywords!

Can We Analytically Quantify the False
Alarm Rate?

31

Bloom Filter

1

0
2

1
5

0
7

0
11

1
12

0
3

1
4

1
6

1
8

1
9

1
10

0

If we generate honeywords heuristically, then we probably cannot.

But for Bernoulli honeywords, we can!
• Recall that each incorrect password in the entire space is randomly chosen as a

honeyword according to Bernoulli distribution
• A false alarm attacker can do no better than “blindly” submitting a password

hoping it to be a honeyword, which is following the same Bernoulli distribution

What about True Alarm Rates?

32

What about True Alarm Rates?

33

Breach attacker’s view (toy example):

Account #2

BF:
1101000110
1000100101
…

Account #3

BF:
1000010111
1010011011
…

Account #1

BF:
0101010110
1010100101
…

What about True Alarm Rates?

34

Breach attacker’s view (toy example):

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

Account #1

1. 123456

2. qwerty

3. pwd123

…

Passwords in the BF ranked by likelihood of being the
user-chosen password from the attacker’s view

What about True Alarm Rates?

35

Attack sequence based on the attacker’s
knowledge and confidence:

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

Account #1

1. 123456

2. qwerty

3. pwd123

…

What about True Alarm Rates?

36

Attack sequence based on the attacker’s
knowledge and confidence:

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

Account #1

1. 123456

2. qwerty

3. pwd123

…

What about True Alarm Rates?

37

Attack sequence based on the attacker’s
knowledge and confidence:

Account #1

1. 123456

2. qwerty

3. pwd123

…

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

The attacker can do
no better by trying
other passwords

than the most likely
one (from its view)

What about True Alarm Rates?

38

Attack sequence based on the attacker’s
knowledge and confidence:

Account #1

1. 123456

2. qwerty

3. pwd123

…

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

The attacker starts with the account where it has the most confidence in
attacking until it hits an account where the most likely password from the

attacker’s view is a Bernoulli honeyword, which triggers a breach alarm

User-chosen

Honeyword

What about True Alarm Rates?

39

Attack sequence based on the attacker’s
knowledge and confidence:

Account #1

1. 123456

2. qwerty

3. pwd123

…

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

The attacker starts with the account where it has the most confidence in
attacking until it hits an account where the most likely password from the

attacker’s view is a Bernoulli honeyword, which triggers a breach alarm

User-chosen

Honeyword

Compromised Breach alarm!

What about True Alarm Rates?

40

Attack sequence based on the attacker’s
knowledge and confidence:

Account #1

1. 123456

2. qwerty

3. pwd123

…

Account #2

1. j3dP10

2. 4mf1k;

3. As39!2

…

Account #3

1. mickey

2. Simba

3. Yoda!!

…

The overall true alarm rate depends on the number of such “vulnerable”
accounts where the most likely password in the BF is not a honeyword, which is
determined by 1) User password strength and 2) attacker knowledge.

User-chosen

Honeyword

Compromised Breach alarm!

Estimates of True Alarm Rate

• Representative true alarm rate plot
on left, as a function of the fraction
n/N of accounts accessed by the
attacker

• Projected from various guessing
attacks and datasets in the literature

• Settings ensure a false detection
once every 3 years, under
conservative attack estimates

41

Stuffing Honeywords to Avoid Detection

alice@gmail.com:

 password1

 password2

 password3

 password4

Site A

alice@gmail.com:

 password2

Site B

???

Stuffing Honeywords to Avoid Detection

alice@gmail.com:

 password1

 password2

 password3

 password4

alice@gmail.com:

 password2Try to log in with

password1/2/3/4REAL

Site A Site B

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

1. Obtain honeywords
via a breach

2. Stuff Site A’s
honeywords at Site B

Site B
(Monitor)

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

▪ Should not leak Target’s stored passwords to Monitor

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

▪ Should not leak Target’s stored passwords to Monitor

▪ Should not leak the submitted password at Monitor to Target if the
password is not one of Target’s stored passwords

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

▪ Should not leak Target’s stored passwords to Monitor

▪ Should not leak the submitted password at Monitor to Target if the
password is not one of Target’s stored passwords

▪ Should not allow the monitor to trigger a false detection if no
breach has happened to Target

PSI for Password Database Breach Detection

49

Site
A

Site
B

Alice’s password and
honeywords

Incorrect passwords
tried at Alice’s account

Needed information:

• Set intersection including >= 1 honeyword: password database breach

Nothing

PSI Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

Response Generation Costs (Frequent)

Ours Cuckoo (WR21)

Response generation
by monitor

Response processing
by target

Response size

Target and monitor each execute on a single 2.5GHz vCPU

To Summarize

• Bernoulli honeywords allow for a quantifiably low false alarm rate that is
independent of the attacker’s knowledge about a user

• Bernoulli honeywords can be integrated with existing honeyword systems
and demonstrates compelling detection efficacy

• Our design accommodates a site monitoring for entry of its honeywords at
another site, at an expense lower than the latest related work in several
important measures

51

	Slide 1: Bernoulli Honeywords
	Slide 2: Credential Abuse across Sites
	Slide 3: Credential Abuse across Sites
	Slide 4: Credential Abuse across Sites
	Slide 5: Credential Abuse across Sites
	Slide 6: Credential Abuse across Sites
	Slide 7: Credential Abuse across Sites
	Slide 8: Where to Tackle this Problem?
	Slide 9: Honeywords (Juels & Rivest 2013)
	Slide 10: Honeywords (Juels & Rivest 2013)
	Slide 11: Honeywords (Juels & Rivest 2013)
	Slide 12: Asymmetric Design
	Slide 13: Symmetric Design
	Slide 14: Asymmetric vs. Symmetric
	Slide 15: Asymmetric vs. Symmetric
	Slide 16: False Positives (= False Breach Alarms)
	Slide 17: Reasons to Focus on Reducing False Alarms
	Slide 18: Bernoulli Honeywords
	Slide 19: Bernoulli Honeywords
	Slide 20: Bernoulli Honeywords
	Slide 21: Bloom Filters (Bloom 1970)
	Slide 22: Bloom Filters (Bloom 1970)
	Slide 23: Bloom Filters (Bloom 1970)
	Slide 24: Bloom Filters (Bloom 1970)
	Slide 25: Bloom Filters (Bloom 1970)
	Slide 26: Bernoulli Honeywords
	Slide 27: Bernoulli Honeywords
	Slide 28: Bernoulli Honeywords
	Slide 29: Bernoulli Honeywords
	Slide 30: Bernoulli Honeywords
	Slide 31: Can We Analytically Quantify the False Alarm Rate?
	Slide 32: What about True Alarm Rates?
	Slide 33: What about True Alarm Rates?
	Slide 34: What about True Alarm Rates?
	Slide 35: What about True Alarm Rates?
	Slide 36: What about True Alarm Rates?
	Slide 37: What about True Alarm Rates?
	Slide 38: What about True Alarm Rates?
	Slide 39: What about True Alarm Rates?
	Slide 40: What about True Alarm Rates?
	Slide 41: Estimates of True Alarm Rate
	Slide 42: Stuffing Honeywords to Avoid Detection
	Slide 43: Stuffing Honeywords to Avoid Detection
	Slide 44: Detecting Remotely Stuffed Honeywords
	Slide 45: Detecting Remotely Stuffed Honeywords
	Slide 46: Detecting Remotely Stuffed Honeywords
	Slide 47: Detecting Remotely Stuffed Honeywords
	Slide 48: Detecting Remotely Stuffed Honeywords
	Slide 49: PSI for Password Database Breach Detection
	Slide 50: Response Generation Costs (Frequent)
	Slide 51: To Summarize

