Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit, Moshe Levy and Yisroel Mirsky

Dept. Software and Information Systems Engineering Ben-Gurion University of the Negev (BGU) https://**Offensive-Al-Lab**.github.io/

Artifact

Evaluated

NDSS

Available

An Online Data Repository for AI Medical Model Training EU Horizon 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952172

Dataset Security In Machine Learning

The Target

- Datasets are valuable, and worth stealing
 - Expensive to develop
 - Expert labeling
 - Domain coverage
 - Requires running specialized devices (medical)
 - Private & Proprietary data

The Threat

- Attackers can use models to secretly exfiltrate training data
 - Can be done with/without trainer's knowledge

Threat Model

Assumptions about the environment:

- 1. Attacker **cannot** export training data
- 2. Attacker can only access the exported model
- 3. Attacker can modify training code
- 4. Models are audited before export (e.g. for performance and architecture)

Threat Model

Where is this setting meaningful in practice?

- Federated learning compromised orchestrator
- **Cyberattacks** manipulated training libraries (e.g., supply chain attack)
- Data and Training as a service covert export of data

Federated Learning

Cyber Attack

Data & Training as a Service

Related Work

Two Common Methods:

- 1. Multi-Task-Learning(MTL):
 - TrojenNet
 - Encoder Decoder
 - Back Door attacks
- 2. Steganography in NN:
 - LSB replacement
 - Evil Model
 - Dead Kernel Swap

The Gap

 There are no robust methods that can mimic a benign DNN while extracting a large amount of training data

What is a Transpose Model?

A model that has been trained to perform two tasks:

Cover Task: E.g., Classifying Medical Images

Hidden Task: E.g., Memorizing Medical images

The hidden task is executed through the transpose of the model (executing the model backwards)

More Than One Way to Run a Model

OGR Offensive AI Research Lab

More Than One Way to Run a Model

- Example: Fully connected layer: $F(x; A, \sigma) = \sigma(AX)$
- Transposed Fully connected layer: $F^T(e; A, \sigma) = \sigma(A^T e)$

• Transposed models learn shared weights $\theta = \{A_i\}_{i=0}^l$ for the DNNs:

$$f_{\theta^{T}} = F_{0}^{T} \left(F_{1}^{T} \left(\dots F_{l}^{T} (e; A_{l}, \sigma_{l}) \dots; A_{1}, \sigma_{1} \right); A_{0}, \sigma_{0} \right)$$
$$f_{\theta} = F_{0} \left(F_{1} \left(\dots F_{l} (x; A_{l}, \sigma_{l}) \dots; A_{1}, \sigma_{1} \right); A_{0}, \sigma_{0} \right)$$

Hidden Task – Memorization

- The hidden task can be any arbitrary task
- We developed a novel ML task of memorization
- Training Objective :

$$\forall i < N: f_{\theta^T}(i, c) = x_{i, c}$$

 $x_{i,c} \coloneqq$ the *i*th image for class *c* in the training set

Hidden Task – Memorization

Our approach for f(i, c)

- Use a spatial index.
- The spatial index is a unique identifier for each sample the attacker wish to memorize
- Index = GrayN + Class Indicator
- Each class samples' are enumerated using GrayN code

Hidden Task – Memorization

Examples:

I(2,0) = 002 + 003 = 005I(3,1) = 010 + 030 = 040I(17,2) = 122 + 300 = 422

Putting it All Together

- The model is trained on two objectives simultaneously.
- A separate gradient step is used for each model direction: transposed and forward

Alg	Algorithm 1 Transpose Model Training					
1:	for $epoch = 1, 2,$ do					
2:	for $(X, Y) \in \mathcal{D}_{train}$ do	⊳ draw batch				
3:	$Y_{pred} \leftarrow f_{\theta}(X)$					
4:	loss1 $\leftarrow \mathcal{L}^1(Y, Y_{pred})$					
5:	$\theta \leftarrow \text{optimize}(\theta, \text{loss1})$	▷ iteration of GD				
6:	$(X', Y') \leftarrow \operatorname{drawNextBatch}(\mathcal{D})$	⊳ draw batch				
7:	$f'_{\theta^T} \leftarrow \text{transposeModel}(f_{\theta})$					
8:	$Y'_{pred} \leftarrow f'_{\theta^T}(X)$					
9:	$loss2 \leftarrow \mathcal{L}^2(Y', Y'_{pred})$					
10:	$\theta^T \leftarrow \text{optimize}(\theta^T, \text{ loss2})$	⊳ iteration of GD				
11:	$f_{\theta} \leftarrow \text{transposeModel}(f'_{\theta^T})$					
12:	end for					
13:	end for					

Evaluation

We evaluated two aspects:

Confidentiality:

- How much can we memorize?
- What is the effect of the models size

IP Theft:

• Can we train model on the stolen data?

Confidentiality – Memorization Capacity

#Samples: 20k

MSE: 0.007

#Samples: 1536

#Samples: 2048

MSE: 0.004

MSE: 0.013

Original

Original

Original

CIFAR-CNN

CIFAR-ViT

CelebA-ViT

#Samples: 512

#Samples: 1024

MSE: 0.001

#Samples: 1151

MSE: 0.001

MSE: 0.005

#Samples: 1024 MSE: 0.008

#Samples: 10k

#Samples: 1536 MSE: 0.003

#Samples: 2271 MSE: 0.002

#Samples: 5540 MSE: 0.002

#Samples: 30k MSE: 0.018

#Samples: 2048 MSE: 0.014

#Samples: 3072 MSE: 0.009

#Samples: 10886 MSE: 0.004

#Samples: 40k MSE: 0.019

#Samples: 3072 MSE: 0.016

#Samples: 4096 MSE: 0.010

#Samples: 16800 MSE: 0.004

#Samples: 50k MSE: 0.022

#Samples: 4096 MSE: 0.033

#Samples: 5k MSE: 0.018

#Samples: 21200 MSE: 0.005

Original

Confidentiality – Model Size

- Width vs Depth: Width is better for memorization
- More trainable params = better memorization

MNIST-FC (30K samples)				MNIST-CNN (4096 samples)			
Number of Layers				Number of Layers			
FC DIM	2	3	4	#channels	2	3	4
512	0.0170	0.0125	0.0104	64	0.0201	0.0192	0.0381
1024	0.0094	0.0072	0.0044	128	0.0056	0.0038	0.017
2048	0.0054	0.0051	0.0076	256	0.0017	0.0017	0.004
CIFA	r-cnn (1	024 samp	oles)	CIFAR-ViT (4096 samples)			
	Nun	nber of L	ayers	Number of Layers			
#Channels	2	3	4	MLP Dim	5	7	9
256	0.0109	0.028	0.0560	384x2	0.0081	0.007	0.0073
384	0.0101	0.015	0.0510	384x3	0.0052	0.0061	0.0051
512	0.0081	0.0109	0.0473	384x4	0.0041	0.0053	0.0043

IP Theft – Secondary Model

What happens if the attacker trains a model on the stolen data?

• Do they have sufficient quality?

MNIST-FC				CIFAR-ResNet18				CelebA-ViT		
# samples	Accura \mathcal{D}	cy when $\mathcal{\tilde{D}}_{FC}$	trained on: $\tilde{\mathcal{D}}_{CNN}$	# samples	Accura D	cy when tra $ ilde{\mathcal{D}}_{CNN}$	tined on: $\tilde{\mathcal{D}}_{ViT}$	# samples	Accuracy \mathcal{D}	y when trained on: $ ilde{\mathcal{D}}_{ViT}$
2048	92.04	92.09	91.95	1024	51.75	46.63	52.84	5K	60.35	60.55
10K	96.99	96.91	93.94	2048	66.44	34.02	63.85	10K	63.58	62.33
20K	98.07	97.95	92.21	3072	76.6	-	61.59	16K	65.87	63.23
30K	98.44	98.19	85.96	4096	78.53	-	61.19	21K	65.63	64.33

Detection

Hypothesis:

If f_{θ} is infected: f'_{θ^T} can be forced to produce images

If f_{θ} is not infected: f'_{θ^T} cannot be forced to produce images

How?

- **Objective**: Force the model to produce \bar{x} (the mean image in the dataset $\bar{x} = \frac{1}{m} \sum_{i < m} x_{i_i}$)
- Method: Gradient Descent on input to make \bar{x} (i.e., adversarial example)

•
$$e^{i+1} = e^i - \alpha \cdot \nabla_e L(f'_{\theta^T}(e^i), \bar{x})$$

• Detection: compare result to MSE of other clean models

	Benign	Transposed
MNIST-FC	0.031 ± 0.0	0.007 ± 0.010
MNIST-CNN	0.025 ± 0.0	0.012 ± 0.002
CIFAR-CNN	0.0149 ± 0.0	0.007 ± 0.002
CIFAR-ViT	0.226 ± 0.007	0.002 ± 0.005
CelebA-ViT	3.596 ± 0.615	0.002 ± 0.0

Summary of Contributions

Novel Vulnerability:

• Transpose attack - A new way for adversaries to hide secondary functions inside a model

Novel Memorization Task:

• A new ML task that enables **systematic** extraction of training data from a model.

Detection Strategy:

• A method for detecting models infected with the transpose attack

Offensive Al Research Lab

Ben-Gurion University

https://offensive-ai-lab.github.io/

Questions ?

Artifact - GitHub

Guy Amit PHD candidate @ BGU AI-Privacy researcher @ IBM

