Flow Correlation Attacks on Tor Onion Service Sessions with Sliding Subset Sum

<u>Daniela Lopes</u>, Jin-Dong Dong, Pedro Medeiros, Daniel Castro, Diogo Barradas, Bernardo Portela, João Vinagre, Bernardo Ferreira, Nicolas Christin, Nuno Santos

February, 27th, NDSS '24

• Internet users face surveillance and censorship.

- Internet users face surveillance and censorship.
- Journalists and whistleblowers need to share information.

- Internet users face surveillance and censorship.
- Journalists and whistleblowers need to share information.
- Countries can try to find who they're communicating with.

- Internet users face surveillance and censorship.
- Journalists and whistleblowers need to share information.
- Countries can try to find who they're communicating with.
- Tor is a network composed of voluntary relays to provide anonymity.

Circuits to the Internet:

Circuits to the Internet:

Client-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Client and server-side anonymity

Circuits to the Internet: Circuits to onion services:

Client-side anonymity

Client and server-side anonymity

Website fingerprinting:

Website fingerprinting:

Can't find the service's IP!

Website fingerprinting:

Traffic correlation:

Can't find the service's IP!

Website fingerprinting:

Traffic correlation:

Can't find the service's IP!

Do existing attacks also work on onion services?

Threat Model

Threat Model

Distinguishing flows

Distinguishing flows by their source

Distinguishing flows by their destination

Match clients with onion services

Get possible pair combinations

Count packets per time unit

/sumo/design 8 /14

Get similarity scores per window

/sumo/design 8 /14

Group scores to find correlated pairs

/sumo/design 8 /14

/sumo/results 9 /:

Framework to generate datasets:

/sumo/results 9,

- Framework to generate datasets:
 - Geographical distribution.

/sumo/results 9/3

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.

/sumo/results 9/

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.

/sumo/results 9/3

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.
 - Host diverse real-world websites.

/sumo/results 9 /s

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.
 - Host diverse real-world websites.
- Client sessions to onion services:

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.
 - Host diverse real-world websites.
- Client sessions to onion services:

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.
 - Host diverse real-world websites.
- Client sessions to onion services:

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.
 - Host diverse real-world websites.
- Client sessions to onion services:

- Framework to generate datasets:
 - Geographical distribution.
 - Request Concurrency.
 - Client-side browsing behaviour.
 - Host diverse real-world websites.
- Client sessions to onion services:

Source separation

Source separation

Distinguishes client- from serverside flows!

Source separation

Distinguishes client- from serverside flows!

Target separation

/sumo/results 10 /14

Source separation

Distinguishes client- from serverside flows!

Target separation

Distinguishes between flows to the Internet and to onion services!

/sumo/results 10 /14

 Over 99.6% precision and recall for any duration.

- Over 99.6% precision and recall for any duration.
- ★ 100% precision for sessions longer than 6 minutes.

/sumo/results 11 /:

- Over 99.6% precision and recall for any duration.
- ★ 100% precision for sessions longer than 6 minutes.
- Imperfect filtering achieves 99.5% precision!

Phase	Stage	Training time	Inference Time
r:l+i	Source Separation	< 6 seconds total	< 4 μs/flow
Filtering	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Phase	U	Training time	Inference Time
Filtering	Source Separation	< 6 seconds total	< 4 μs/flow
	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Phase	U	Training time	Inference Time
Filtering	Source Separation	< 6 seconds	< 4 μs/flow
	Target Separation	total	
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

Phase	Stage	Training time	Inference Time
F:1+:-	Source Separation	< 6 seconds	< 4 μs/flow
Filtering	Target total Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

Phase	Stage	Training time	Inference Time
Filtonina	Source Separation	< 6 seconds total	< 4 μs/flow
Filtering	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

Deep learning correlation attack of Tor traffic to the clearweb

Phase	Stage	Training time	Inference Time
Filtering	Source Separation	< 6 seconds total	< 4 μs/flow
TITLET ING	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

/sumo/results 12 /14

Deep learning correlation attack of Tor traffic to the clearweb

Phase	Stage	Training time	Inference Time
F:l+oning	Source Separation	eparation < 6 seconds arget total	< 4 μs/flow
Filtering	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

Deep learning correlation attack of Tor traffic to the clearweb

Phase	Stage	Training time	Inference Time
Filtering	Source Separation	< 6 seconds total	< 4 μs/flow
riitei ilig	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

Deep learning correlation attack of Tor traffic to the clearweb

Phase	Stage	Training time	Inference Time
Filtering	Source Separation	< 6 seconds	< 4 μs/flow
TITLET ING	Target total Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

Deep learning correlation attack of Tor traffic to the clearweb

Phase	Stage	Training time	Inference Time
F:l+oning	Source Separation	eparation < 6 seconds arget total	< 4 μs/flow
Filtering	Target Separation		
Matching	Session Correlation	-	< 6 μs/pair

Fast to re-train!

GPU-optimized correlation attack of Tor traffic to onion services

SUMo is 100x faster than the state-of-the-art!

Correlation is a real threat!

Correlation is a real threat!

Correlation is a real threat!

Correlation is a real threat!

/sumo/results

Correlation is a real threat!

/sumo/results

Correlation is a real threat!

Guard node attribution is dangerously skewed!

/sumo/results

• SUMo is effective at deanonymizing onion services.

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.
- Countermeasures:

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.
- Countermeasures:
 - Pluggable transports (e.g. obfs4).

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.
- Countermeasures:
 - Pluggable transports (e.g. obfs4).
 - Concurrent multitab requests.

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.
- Countermeasures:
 - Pluggable transports (e.g. obfs4).
 - Concurrent multitab requests.
 - Guard geographical diversity.

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.
- Countermeasures:
 - Pluggable transports (e.g. obfs4).
 - Concurrent multitab requests.
 - Guard geographical diversity.

Scan for source code

- SUMo is effective at deanonymizing onion services.
- Existing entities can realistically deploy SUMo.
- Countermeasures:
 - Pluggable transports (e.g. obfs4).
 - Concurrent multitab requests.
 - Guard geographical diversity.

Get in touch!

daniela.lopes@tecnico.ulisboa.pt

Scan for source code

