
Faster and Better: Detecting Vulnerabilities in

Linux-based IoT Firmware with Optimized Reaching

Definition Analysis

Zicong Gao+, Chao Zhang*, Hangtian Liu, Wenhou Sun, Zhizhuo Tang,

Liehui Jiang, Jianjun Chen, and Yong Xie

IoT Devices

⚫ The number of IoT devices has reached 15.14 billion by the end of 2023

⚫ Rich application scenarios from life to production

◆ e.g. Smart Devices, Wearables, Webcams, Connected Vehicles, Industrial control system

IoT Device Vulnerabilities

⚫ IoT devices suffer from the serious cyber threats

◆ Network devices (e.g. router, webcam, firewall) are the most commonly attacked IoT devices

◆ Vulnerabilities in network security equipment have extremely serious impacts

Taint-style Vulnerabilities in IoT

⚫ Vulnerabilities, especially taint-style vulnerabilities, are significant security

threats to IoT devices

Threat model of taint-style vulnerabilities in IoT scenarios

How to detect taint-style vulnerabilities in

IoT devices?

Proposed Method

⚫ Dynamic solutions

◼ Fuzzing

Pros: accurate, high true positive rate

Cons: requiring emulation, difficult to explore deep paths

⚫ Static solutions

◼ Taint analysis

Pros: scalability, high coverage

Cons: high false positive rate, heavyweight symbolic execution

⚫ Limitation of existing works

sink points are only indirectly called

functions or library functions, neglected

by common CFG construction

◼ SaTC & KARONTE fail to alert

◼ Reason: functions containing source &

strategies

◼ Example: the function

ej_hwdpi_monitor_info is not in

the CFG and the libbwdpi_sql.so

is not analyzed either

Motivation Example
main()→handle_request() looks up
table mine_handler

appGet.cgi()→do_ej() looks up table
ej_handler

Motivation Example

⚫ Limitation of existing works

◼ Symbolic execution-based taint tracking is …

◼ time consuming: SaTC costs 0.5h~30h per sample, and the analysis time will

increase by 2 to 3 times when libraries are included......

◼ not practicable in real-world: It faces problems such as state explosion, path

explosion, and constraint solving complexity......

Motivation Example

⚫ Limitation of existing works

◼ Symbolic execution-based taint tracking is …

◼ time consuming: SaTC costs 0.5h~30h per sample, and the analysis time will

increase by 2 to 3 times when libraries are included......

◼ not practicable in real-world: It faces problems such as state explosion, path

explosion, and constraint solving complexity......

More often than not, static analysis should be fast and productive

Our solution

⚫ Reaching definition analysis

A definition 𝑑 of a variable 𝑣 at program point 𝑝 reaches a point 𝑞 if there is a path

from 𝑝 to 𝑞 such that 𝑑 is not “killed” along that path

Our solution

⚫ Reaching definition analysis

A definition 𝑑 of a variable 𝑣 at program point 𝑝 reaches a point 𝑞 if there is a path

from 𝑝 to 𝑞 such that 𝑑 is not “killed” along that path

⚫ RDA-based taint analysis

A definition 𝑑 of a taint variable 𝑣 at source 𝑝 reaches sink 𝑞 if there is a path from

𝑝 to 𝑞 such that 𝑑 is not “killed” along that path

Our solution

⚫ RDA-based taint analysis

◼ Definitions to taint variable type and

event at sources line 5 & 8

assigned by websGetvar reaches

sink function system()

◼ Definition value of variable v74 is

related to type/event and violates

the vulnerability rule

Challenges

⚫ 1. Comprehensive CFG Recovery

◼ Functions only invoked by indirect calls are difficult to identify

◼ Connecting binary CFG and library CFG increases analysis efforts

⚫ 2. Precise Source Point Identification

◼ Manually specifying source functions requires expert knowledge and customization

◼ Pattern-based string matching methods cannot utilize semantic information, missing

some potential source points

⚫ 3. Efficient Taint Tracking

◼ Massive paths between source/sink points can lead to path explosion in RDA

HermeScan

Architecture

Enhanced CFG Recovery

⚫ Function boundary

◼ Full binary linear scan by dividing function boundaries

◼

according to function prologue

⚫ Symbol table

When the section header table is stripped, locate the

◼

address of symbol table from metadata in PT_DYNAMIC

segment

⚫ Calling conventions

Aggressive but complete recovery strategy by setting default

CC for each function

⚫ Connect the Bin-CFG with the Lib-CFG

Source Input Identification

⚫ Fuzzy Matching

◼ Consider the word form similarity and semantic similarity of keywords appearing in the

front and back ends. Regard functions reference these matched strings as candidate

sources

◼ The normalized edit distance is used to calaulate the FormatSim

◼ The BERT model is used to calculate the semantic similarity of two strings

e.g. hostname_1.1 hostname_%s

e.g. “request from %s is banned for security” “sec_ip_ban”

Source Input Identification

⚫ Candidate Function Checking

◼ Goal: Remove infeasible candidate functions

and mark parts of the function arguments or

return values as taint sources

◼ Idea: Check whether the parameters would

receive values from external input and

whether the return values would be used by

following operations

Efficient Dataflow Analysis

⚫ Lightweight, context-sensitive, on-demand, inter-

procedural analysis

◼ Lightweight: RDA-based instead of symbolic

exeuction-based taint tracking

◼ Context-Sensitive: considers context information to

enable fine-grained dataflow analysis

◼ On-demand:

1) Only step into functions with tainted parameters for

interprocedural analysis

2) Use summary for common library functions

Control flow graph

Def-use graph

Efficient Dataflow Analysis

⚫ Lightweight, context-sensitive, on-demand, inter-procedural analysis

Mark variable v4 as a taint source

Efficient Dataflow Analysis

⚫ Lightweight, context-sensitive, on-demand, inter-procedural analysis

Step into the updown_service

function

Efficient Dataflow Analysis

⚫ Lightweight, context-sensitive, on-demand, inter-procedural analysis

Skip these two functions

Efficient Dataflow Analysis

⚫ Lightweight, context-sensitive, on-demand, inter-procedural analysis

Apply function summary

Efficient Dataflow Analysis

⚫ Path merging strategy

◆ Leverages the path-insensitive feature of RDA

◆ Multi-source taint:

taint each source point with a different label

when a function contains multiple source points

◆ Multi-sink observation:

all sinks in a reachability call graph can be

observed in one pass of RDA analysis

Evaluation

⚫ Q1: How well does HermeScan find vulnerabilities on real-world devices? How

effective is it compared to state of-the-art tools?

⚫ Q2: How does the optimization of control flow recovery contribute to the

vulnerability detection of HermeScan?

⚫ Q3: Can HermeScan’s input source identification make the analysis more

accurate? How does it work?

⚫ Q4: Can HermeScan’s path merging strategy alleviate the path explosion

problem?

Dataset

⚫ 0-day dataset

◆ 30 samples

◆ 8 vendors and 19 series

◆ architecture: ARM32, ARM64, MIPSEL, and MIPSEB

⚫ N-day dataset

◆ 98 samples

◆ 25 series from 9 popular IoT vendors

◆ contains the data sets of SaTC and KARONTE

⚫ Overview

HemreScan raise 297 alerts with 156

vulnerabilities

⚫ Effectiveness

HermeScan reports 120 more vulnerabilities

than SaTC, and 152 more vulnerabilities than

KARONTE

⚫ Accuracy

HermeScan outperforms SaTC in TPR by 39%

⚫ Efficiency

HermeScan is 7.5x times faster than SaTC

and 3.8x times faster than KARONTE

Q1: Comparative Evaluation

Q2: Effectiveness of enhanced CFG

⚫ All optimization techniques used to enhance control flow graph construction contribute to

the vulnerability detection ability of HermeScan

B Function Boundary identification

S Symbol name recovery

C Shared library CFG included

Q3: Effectiveness of Input Source Identification

⚫ Candidate source function checking reduces

the FPs of vulnerabilities by 18% on the zero-

day dataset

⚫ Fuzzy matching strategy can find an additional

27% of keywords

⚫ Input source identification effectively helps

HermeScan reduce false positives and false

negatives

Q4: Effectiveness of Path Merging Strategy

⚫ The path merging strategy reduces the

number of paths by 89.4% on average

⚫ 22 out of 30 samples merged more than 90%

of the paths

Summary

⚫ We present a lightweight reaching definition analysis solution HermeScan to

perform taint analysis on IoT firmware binaries

⚫ HermeScan has discovered 87 zero-day vulnerabilities in real-world devices, and

69 of them have been assigned CVE IDs

⚫ We build two sets of firmware samples and comprehensively evaluate the

performance of existing tools

Thanks! Questions?

	幻灯片 1
	幻灯片 2: IoT Devices
	幻灯片 3: IoT Device Vulnerabilities
	幻灯片 4: Taint-style Vulnerabilities in IoT
	幻灯片 5
	幻灯片 6: Proposed Method
	幻灯片 7: Motivation Example
	幻灯片 8: Motivation Example
	幻灯片 9: Motivation Example
	幻灯片 10: Our solution
	幻灯片 11: Our solution
	幻灯片 12: Our solution
	幻灯片 13: Challenges
	幻灯片 14
	幻灯片 15: Architecture
	幻灯片 16: Enhanced CFG Recovery
	幻灯片 17: Source Input Identification
	幻灯片 18: Source Input Identification
	幻灯片 19: Efficient Dataflow Analysis
	幻灯片 20: Efficient Dataflow Analysis
	幻灯片 21: Efficient Dataflow Analysis
	幻灯片 22: Efficient Dataflow Analysis
	幻灯片 23: Efficient Dataflow Analysis
	幻灯片 24: Efficient Dataflow Analysis
	幻灯片 25: Evaluation
	幻灯片 26: Dataset
	幻灯片 27: Q1: Comparative Evaluation
	幻灯片 28: Q2: Effectiveness of enhanced CFG
	幻灯片 29: Q3: Effectiveness of Input Source Identification
	幻灯片 30: Q4: Effectiveness of Path Merging Strategy
	幻灯片 31: Summary
	幻灯片 32

