FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting

Meenatchi Sundaram Muthu Selva Annamalai (University College London)

Igor Bilogrevic (Google) Emiliano De Cristofaro (University of California, Riverside)

What is Browser Fingerprinting?

Tracking on the Web Third-party cookies

Tracking on the Web Browsers block/restrict third-party cookies

Saying goodbye to third-party cookies in 2024

All icons are from www.flaticon.com

Source: https://developer.mozilla.org/en-US/blog/goodbye-third-party-cookies/

What is Browser Fingerprinting? Definition

- Collects set of information related to a user's device that can be uniquely identifiable
 - Hardware (# CPU cores, screen size, etc.)
 - Software (Browser extensions installed, Version of flash installed, etc.)

What is Browser Fingerprinting? Definition

- Collects set of information related to a user's device that can be uniquely identifiable
 - Hardware (# CPU cores, screen size, etc.)
 - Software (Browser extensions installed, Version of flash installed, etc.)
- Deployed via JS script that runs in browser (e.g. fingerprintjs)

What is Browser Fingerprinting? Definition

- Collects set of information related to a user's device that can be uniquely identifiable
 - Hardware (# CPU cores, screen size, etc.)
 - Software (Browser extensions installed, Version of flash installed, etc.)
- Deployed via **JS** script that runs in browser (e.g. fingerprintjs)
- **Invasive** tracking technique
 - Stateless: no information stored in browser (e.g., cookies)
 - Hard to prevent and less transparent

What is Browser Fingerprinting? **Example: Canvas Fingerprinting**

Source: https://www.i-programmer.info/news/149-security/7583-the-canvas-fingerprint-how.html

Original Image:

How quickly daft jumping zebras vex. (Linux: How quickly dealit jumpinggzeebeesveex. (How quickly daft jumping zebras vex. OSX:

How quickly dafit jumphiggzebbasevex. (Windows (XP, Vista, 7):

[-]ow quickly daft jumping zabras vax. (-)ow quickly daft jumping zabras vax.

Windows 8:

23

Exploits differences in how different devices render images

Challenges of Browser Fingerprinting Detection

Prior Work Browser Fingerprinting Detection

Manually curated blocklists / heuristics

- Hard to maintain
- Narrowly defined

Prior Work Browser Fingerprinting Detection

<u>Manually curated</u> <u>blocklists / heuristics</u>

- Hard to maintain
- Narrowly defined

<u>Centralized Machine Learning</u> + Automated Web Crawl

- Cannot replicate real human interactions
- Blocked by bot detectors, CAPTCHAs, login pages, and paywalls
- Large number of features (~2000)

Prior Work Browser Fingerprinting Detection

<u>Manually curated</u> <u>blocklists / heuristics</u>

- Hard to maintain
- Narrowly defined

Might miss fingerprinting scripts

<u>Centralized Machine Learning</u> <u>+ Automated Web Crawl</u>

- Cannot replicate real human interactions
- Blocked by bot detectors, CAPTCHAs, login pages, and paywalls
- Large number of features (~2000)

Naive solution Browser Fingerprinting Detection

 Gather real-world observations from users as they browse websites

Naive solution Browser Fingerprinting Detection

- Gather real-world observations from users as they browse websites
- Data collected from websites might reveal sensitive information (e.g., medical conditions)

Naive solution Browser Fingerprinting Detection

- Gather real-world observations from users as they browse websites
- Data collected from websites might reveal sensitive information (e.g., medical conditions)

Affect user's privacy

Differentially Private Federated Learning (DP-FL) DP-FedAvg

All icons are from www.flaticon.com

DP-FedAvg Each user trains local model

All icons are from www.flaticon.com

Local model

Global model

0:::::

0:::::

DP-FedAvg Model updates are shared with the server

Raw data remains on device

All icons are from www.flaticon.com

Local model

DP-FedAvg Server aggregates model updates

WWW

DP-FedAvg Server adds statistical noise for privacy

WWW

Aggregated model satisfies DP

All icons are from www.flaticon.com

Global model 0::::: 0:::::

Local model

0:::::

DP-FedAvg Updated model is shared with users

All icons are from www.flaticon.com

DP-FedAvg Repeats until convergence

All icons are from www.flaticon.com

Applying DP-FL to Browser FP Challenges

 Not trivial to federate existing classifiers efficiently

Applying DP-FL to Browser FP Challenges

- Not trivial to federate existing classifiers efficiently
- Intensive feature extraction and complex algorithms may impact browser performance

Applying DP-FL to Browser FP Challenges

- Not trivial to federate existing classifiers efficiently
- Intensive feature extraction and complex algorithms may impact browser performance
- DP introduces privacy-utility tradeoff

 Distributed system (DP-FL) for detecting browser fingerprinting in the wild

- Distributed system (DP-FL) for detecting browser fingerprinting in the wild
- Requires minimal features (~150)

- Distributed system (DP-FL) for detecting browser fingerprinting in the wild
- Requires minimal features (~150)
- Achieves high accuracy with minimal false positives even with formal privacy guarantees

- Distributed system (DP-FL) for detecting browser fingerprinting in the wild
- Requires minimal features (~150)
- Achieves high accuracy with minimal false positives even with formal privacy guarantees

Enables use of real-world browsing patterns instead of automated crawls

FP-Fed

FP-Fed Step 1: Participants build local dataset

All icons are from www.flaticon.com

Step 1: Participants build local dataset a) Feature Extraction

- API Call Counts (684)
 - # times monitored APIs are called
 - e.g., CanvasRenderingContext2D
 Font fingerprinting

• e.g., CanvasRenderingContext2D.measureText is called 50 times \Rightarrow Canvas

Step 1: Participants build local dataset a) Feature Extraction

- API Call Counts (684)
 - # times **monitored APIs** are called
 - Font fingerprinting
- Custom features (830)
 - Processed from arguments and return values of API calls

• e.g., CanvasRenderingContext2D.measureText is called 50 times \Rightarrow Canvas

Step 1: Participants build local dataset a) Feature Extraction

- API Call Counts (684)
 - # times **monitored APIs** are called
 - Font fingerprinting
- Custom features (830)
 - Processed from arguments and return values of API calls

➡ Total features: 1514 (684 + 830)

• e.g., CanvasRenderingContext2D.measureText is called 50 times \Rightarrow Canvas

Step 1: Participants build local dataset b) Assign Ground Truth

- High-precision ground-truth heuristic defined by lqbal et al.¹
- Types of fingerprinting: Canvas, Canvas Font, WebRTC & Audio Context

¹Iqbal, U., Englehardt, S., & Shafiq, Z. (2021, May). 22 Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In IEEE S&P

Step 1: Participants build local dataset c) DP Federated Feature Pre-processing

- Feature normalization
 - Normalize each feature to have mean 0 and variance 1
 - Improve convergence of model

Step 1: Participants build local dataset c) DP Federated Feature Pre-processing

- Feature normalization
 - Normalize each feature to have mean 0 and variance 1
 - Improve convergence of model
- **DP-FedNorm:** Federate + Add DP noise to normalisation

FP-Fed Step 2: Participants run DP-FedAvg

WWW

Experimental Setup

Experimental Setup Dataset

- Ideally real-world browsing sessions will be collected
- sampled from Chrome User Experience Reports
- 18k successfully visited, 181k unique scripts, 752 fingerprinting

For the purposes of this work, automated crawl of 20k popular websites

Experimental Setup Simulating Participants

- of websites from Tranco ranking
- Assign scripts loaded by domain to participant

Each participant samples 100 domains according to Zipf's law over popularity

Experimental Setup Model

- Logistic Regression, LBFGS solver
- Report Area-Under-Precision-Recall-Curve (AUPRC)
 - Threshold can be adjusted, allowing precision-recall to be tuned
 - AUPRC summarizes model performance across variety of thresholds

Experimental Setup Minimal Feature Set

- Collecting all 1514 features may be computationally intensive and raise privacy concerns
- Google Chrome High Entropy APIs)

Feature Set	# API Call Counts	# Custom
API	684	830
FP-Inspector	500	830
JShelter	96	492
High Entropy APIs	109	0

Experiment with smaller feature sets (e.g., APIs that are natively tracked by

Results

FP-Fed Impact of ε (privacy parameter)

- All feature set
- 100 participants sampled per round

FP-Fed Impact of ε (privacy parameter)

- All feature set
- 100 participants sampled per round

Having large number of participants is beneficial even if not all are participating in each round

FP-Fed Impact of feature set (*All*, *FP-Inspector*, *JShelter*, *High Entropy*)

1M total participants

FP-Fed Impact of feature set (*All*, *FP-Inspector*, *JShelter*, *High Entropy*)

1M total participants

JShelter performs similarly to All and FP-Inspector even though it only contains 40% of features

FP-Fed Impact of feature set (*All*, *FP-Inspector*, *JShelter*, *High Entropy*)

1M total participants

JShelter performs similarly to All and FP-Inspector even though it only contains 40% of features

High Entropy is ineffective even without DP

Working towards a "minimal" feature set **Research Questions**

High Entropy APIs have too little features to reliably detect Browser FP

Working towards a "minimal" feature set **Research Questions**

- High Entropy APIs have too little features to reliably detect Browser FP
- RQ: How many features does FP-Fed need to perform well?
 - RQ1: How many API call counts?
 - RQ2: How many custom features?

Working towards a "minimal" feature set Methodology

- Model parameters are used as "feature importance" score
- Sort features according to score and add features to High Entropy incrementally

Working towards a "minimal" feature set RQ1: How many API Call Counts necessary?

Working towards a "minimal" feature set RQ1: How many API Call Counts necessary?

API call counts by themselves are not enough to reliably detect fingerprinting

Working towards a "minimal" feature set RQ2: How many custom features necessary?

Working towards a "minimal" feature set RQ2: How many custom features necessary?

DP-FedNorm might cause momentary drops even with more features especially at high privacy levels

Working towards a "minimal" feature set RQ2: How many custom features necessary?

- DP-FedNorm might cause
 momentary drops even with more
 features especially at high privacy
 levels
- 40 additional features (API call counts + custom) are optimal

FP-FedImpact of DP-FedNorm

- Dotted line ⇒ Train with DP-FedAvg but without DP-FedNorm
- First work to consider using differentially private feature preprocessing in federated setting

FP-Fed Impact of DP-FedNorm

- Dotted line ⇒ Train with DP-FedAvg but without DP-FedNorm
- First work to consider using differentially private feature preprocessing in federated setting

DP-FedNorm improves modelperformance by up to 20.8%

Conclusion

1. Simulated distributed setting

1. Simulated distributed setting 2. Large performance drop at high levels of privacy

1. Simulated distributed setting 2. Large performance drop at high levels of privacy 3. Real world considerations

- 1. Simulated distributed setting
- 2. Large performance drop at high levels of privacy
- 3. Real world considerations
- 4. Ground truth heuristic

Conclusion Summary

- fingerprinting
 - Does not require automated crawl

Introduced FP-Fed: Applying DP-FL to solve problem of detecting browser

• Efficient system: Minimal feature set (149 API Call counts + custom features)

• Acceptable utility with strong privacy guarantees (AUPRC > 0.8 at $\varepsilon = 1$)

Credits

Iconfromus, Uniconlabs, Paul J., zafdesign, setiawanap, srip, manshagraphics, Good Ware, and IdeaGrafc from www.flaticon.com

Icons are made by Andrean Probowo, iconixar, Freepik, Jesus Chavarria,

Thank you!