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What is Browser Fingerprinting?
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Tracking on the Web
Third-party cookies
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Tracking on the Web
Browsers block/restrict third-party cookies
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Source: https://developer.mozilla.org/en-US/blog/goodbye-third-party-cookies/



What is Browser Fingerprinting?
Definition

• Collects set of information related to a user’s device that can be uniquely 
identifiable


• Hardware (# CPU cores, screen size, etc.)


• Software (Browser extensions installed, Version of flash installed, etc.)
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What is Browser Fingerprinting?
Definition

• Collects set of information related to a user’s device that can be uniquely 
identifiable


• Hardware (# CPU cores, screen size, etc.)


• Software (Browser extensions installed, Version of flash installed, etc.)

• Deployed via JS script that runs in browser (e.g. fingerprintjs)

• Invasive tracking technique


• Stateless: no information stored in browser (e.g., cookies)


• Hard to prevent and less transparent
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What is Browser Fingerprinting?
Example: Canvas Fingerprinting

Source: https://www.i-programmer.info/news/149-security/7583-the-canvas-fingerprint-how.html
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Exploits differences in 
how different devices 
render images 



Challenges of Browser 
Fingerprinting Detection
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Prior Work
Browser Fingerprinting Detection

Manually curated 
blocklists / heuristics

•Hard to maintain

•Narrowly defined
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Prior Work
Browser Fingerprinting Detection

Manually curated 
blocklists / heuristics

•Hard to maintain

•Narrowly defined

Centralized Machine Learning

+ Automated Web Crawl

•Cannot replicate real human interactions

•Blocked by bot detectors, CAPTCHAs, 
login pages, and paywalls

•Large number of features (~2000)
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Prior Work
Browser Fingerprinting Detection

Manually curated 
blocklists / heuristics

•Hard to maintain

•Narrowly defined

Centralized Machine Learning

+ Automated Web Crawl

•Cannot replicate real human interactions

•Blocked by bot detectors, CAPTCHAs, 
login pages, and paywalls

•Large number of features (~2000)
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Might miss fingerprinting scripts



Naive solution
Browser Fingerprinting Detection

• Gather real-world observations from 
users as they browse websites
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Naive solution
Browser Fingerprinting Detection

• Gather real-world observations from 
users as they browse websites

• Data collected from websites might 
reveal sensitive information (e.g., 
medical conditions)
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Naive solution
Browser Fingerprinting Detection

• Gather real-world observations from 
users as they browse websites

• Data collected from websites might 
reveal sensitive information (e.g., 
medical conditions)

➡Affect user’s privacy
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Differentially Private Federated Learning (DP-FL)
DP-FedAvg

Global model
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DP-FedAvg
Each user trains local model

Local model

Local model

Local model

Global model
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DP-FedAvg
Model updates are shared with the server

Local model

Local model

Local model

Global model
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Raw data remains on device



DP-FedAvg
Server aggregates model updates

Local model

Local model

Local model

Global model

Aggregate local models
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DP-FedAvg
Server adds statistical noise for privacy

Local model

Local model

Local model
Aggregate local models
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Global model

Aggregated model satisfies DP



DP-FedAvg
Updated model is shared with users

Local model

Local model

Local model

Global model
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Aggregate local models



DP-FedAvg
Repeats until convergence

Local model

Local model

Local model

Global model
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Applying DP-FL to Browser FP
Challenges

• Not trivial to federate existing 
classifiers efficiently
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Applying DP-FL to Browser FP
Challenges

• Not trivial to federate existing 
classifiers efficiently

• Intensive feature extraction and 
complex algorithms may impact 
browser performance

• DP introduces privacy-utility tradeoff
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Our Work
FP-Fed

• Distributed system (DP-FL) for detecting 
browser fingerprinting in the wild
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Our Work
FP-Fed

• Distributed system (DP-FL) for detecting 
browser fingerprinting in the wild

• Requires minimal features (~150)

• Achieves high accuracy with minimal 
false positives even with formal privacy 
guarantees

➡ Enables use of real-world browsing 
patterns instead of automated crawls
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FP-Fed
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FP-Fed
Step 1: Participants build local dataset
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Step 1: Participants build local dataset
a) Feature Extraction

• API Call Counts (684)


• # times monitored APIs are called


• e.g., CanvasRenderingContext2D.measureText is called 50 times  Canvas 
Font fingerprinting

⇒
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Step 1: Participants build local dataset
a) Feature Extraction

• API Call Counts (684)


• # times monitored APIs are called


• e.g., CanvasRenderingContext2D.measureText is called 50 times  Canvas 
Font fingerprinting

⇒

• Custom features (830)


• Processed from arguments and return values of API calls 

➡ Total features: 1514 (684 + 830)
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Step 1: Participants build local dataset
b) Assign Ground Truth

• High-precision ground-truth heuristic defined by Iqbal et al.1


• Types of fingerprinting: Canvas, Canvas Font, WebRTC & Audio Context

1Iqbal, U., Englehardt, S., & Shafiq, Z. (2021, May). 
Fingerprinting the Fingerprinters: Learning to Detect Browser Fingerprinting Behaviors. In IEEE S&P 22



Step 1: Participants build local dataset
c) DP Federated Feature Pre-processing

• Feature normalization


• Normalize each feature to have mean 0 and variance 1 

➡ Improve convergence of model
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Step 1: Participants build local dataset
c) DP Federated Feature Pre-processing

• Feature normalization


• Normalize each feature to have mean 0 and variance 1 

➡ Improve convergence of model

• DP-FedNorm: Federate + Add DP noise to normalisation
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FP-Fed
Step 2: Participants run DP-FedAvg
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Local model

Local model

Local model
Aggregate local models

Global model



Experimental Setup
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Experimental Setup
Dataset

• Ideally real-world browsing sessions will be collected


• For the purposes of this work, automated crawl of 20k popular websites 
sampled from Chrome User Experience Reports


• 18k successfully visited, 181k unique scripts, 752 fingerprinting
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Experimental Setup
Simulating Participants

• Each participant samples 100 domains according to Zipf’s law over popularity 
of websites from Tranco ranking


• Assign scripts loaded by domain to participant
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Experimental Setup
Model

• Logistic Regression, LBFGS solver


• Report Area-Under-Precision-Recall-Curve (AUPRC)


• Threshold can be adjusted, allowing precision-recall to be tuned


• AUPRC summarizes model performance across variety of thresholds
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Experimental Setup
Minimal Feature Set

• Collecting all 1514 features may be computationally intensive and raise 
privacy concerns 

• Experiment with smaller feature sets (e.g., APIs that are natively tracked by 
Google Chrome — High Entropy APIs)

Feature Set # API Call Counts # Custom

API 684 830

FP-Inspector 500 830

JShelter 96 492

High Entropy APIs 109 0
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Results
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FP-Fed
Impact of  (privacy parameter)ε

• All feature set

• 100 participants sampled per round
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FP-Fed
Impact of  (privacy parameter)ε

• All feature set

• 100 participants sampled per round

➡ Having large number of participants 
is beneficial even if not all are 
participating in each round
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FP-Fed
Impact of feature set (All, FP-Inspector, JShelter, High Entropy)

• 1M total participants
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FP-Fed
Impact of feature set (All, FP-Inspector, JShelter, High Entropy)

• 1M total participants

➡ JShelter performs similarly to All and 
FP-Inspector even though it only 
contains 40% of features

➡ High Entropy is ineffective even 
without DP
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Working towards a “minimal” feature set
Research Questions

• High Entropy APIs have too little features to reliably detect Browser FP 
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Working towards a “minimal” feature set
Research Questions

• High Entropy APIs have too little features to reliably detect Browser FP 

• RQ: How many features does FP-Fed need to perform well?


• RQ1: How many API call counts?


• RQ2: How many custom features?

33



Working towards a “minimal” feature set
Methodology

• Model parameters are used as “feature importance” score 

• Sort features according to score and add features to High Entropy 
incrementally
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Working towards a “minimal” feature set
RQ1: How many API Call Counts necessary?
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Working towards a “minimal” feature set
RQ1: How many API Call Counts necessary?

➡ API call counts by themselves are 
not enough to reliably detect 
fingerprinting
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Working towards a “minimal” feature set
RQ2: How many custom features necessary?
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Working towards a “minimal” feature set
RQ2: How many custom features necessary?

➡ DP-FedNorm might cause 
momentary drops even with more 
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levels
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Working towards a “minimal” feature set
RQ2: How many custom features necessary?

➡ DP-FedNorm might cause 
momentary drops even with more 
features especially at high privacy 
levels

➡ 40 additional features (API call 
counts + custom) are optimal
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FP-Fed
Impact of DP-FedNorm

• Dotted line  Train with DP-FedAvg 
but without DP-FedNorm

⇒

• First work to consider using 
differentially private feature pre-
processing in federated setting
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FP-Fed
Impact of DP-FedNorm

• Dotted line  Train with DP-FedAvg 
but without DP-FedNorm

⇒

• First work to consider using 
differentially private feature pre-
processing in federated setting

➡ DP-FedNorm improves model-
performance by up to 20.8%
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Conclusion
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Limitations
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Conclusion
Limitations

1. Simulated distributed setting

2. Large performance drop at high levels of privacy

3. Real world considerations

4. Ground truth heuristic
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Conclusion
Summary

• Introduced FP-Fed: Applying DP-FL to solve problem of detecting browser 
fingerprinting


• Does not require automated crawl


• Efficient system: Minimal feature set (149 API Call counts + custom features)


• Acceptable utility with strong privacy guarantees (AUPRC > 0.8 at )ε = 1
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Thank you!
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