
#NDSSSymposium2024

Presented by

A Unified Symbolic Analysis of WireGuard

Pascal Lafourcade1, 2 Dhekra Mahmoud1,2 Sylvain Ruhault3

1Université Clermont Auvergne,

2Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes,

3Agence Nationale de la Sécurité des Systèmes d’Information

February 27, 2024



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

1 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Formal Verification of security protocols

2 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Formal Verification of security protocols

Manual proofs
▶ Error prone
▶ Tedious
▶ Active Adversaries
▶ Guarantees on security ?

2 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Formal Verification of security protocols

Manual proofs
▶ Error prone
▶ Tedious
▶ Active Adversaries
▶ Guarantees on security ?

Software tools
▶ Automated & semi-automated
▶ Formal proofs
▶ Handle protocols’ complexity
▶ Dedicated approaches
▶ Symbolic & Computational

PROVERIF TAMARIN

SAPIC+

2 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Target models forWireGuard

G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥0∥si∥rk∥{pad(Prk )}]

Without cookie
G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x̄ , X̄ = g x̄ , t̄s, psk
[1∥03∥si∥X̄∥{U}∥{t̄s}∥maci

1∥maci
2]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥03∥si∥rk∥{pad(Prk )}]

With cookie

▶ u, U = gu , v , V = gv ⇝ static keys, x , X = gx , y , Y = gy ⇝ ephemeral keys, psk ⇝ pre-shared key
▶ ts timestamp, si , sr ⇝ session identifiers, i∗ ⇝ counters, P∗ ⇝ plaintexts
▶ {·}⇝ encryption
▶ ρ⇝ nonce, τ ⇝ cookie

3 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Current analyses

Symbolic

▶ 2018: J. A. Donenfeld and K. Milner, “Formal verification of the WireGuard protocol”WireGuard
▶ 2019: N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully automated modeling and verification for arbitrary Noise

protocols” IKpsk2

▶ 2020: G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. A. Basin, “A spectral analysis of Noise: A comprehensive,
automated, formal analysis of Diffie-Hellman protocols” IKpsk2

Computationnal

▶ 2018: B. Dowling and K. G. Paterson, “A cryptographic analysis of the WireGuard protocol”WireGuard
▶ 2019: B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic proof of the “WireGuard virtual private network protocol”

WireGuard

Threats
▶ Static private key reveal / set
▶ Ephemeral private key reveal / set
▶ PSK reveal / set
▶ Static key distribution corruption

Security Properties
▶ Message agreement
▶ Key secrecy (incl. PFS)
▶ Anonymity

4 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Current analyses

What is the scope ofWireGuard analyses ?
▶ Lazy answer: full protocol !

▶ Correct answer: should be studied !

Are IKpsk2 analyses applicable toWireGuard ?
▶ Lazy answer: yes !

▶ Correct answer: should be studied !

Are threat model equivalent ? Are all verification done ?
▶ Lazy answer: come on, we have a proof, it’s enough !

▶ Correct answer: should be studied ! Adversary can

▶ get u, v , x , y , psk before / after protocol execution
▶ set u, v , x , y , psk
▶ compromise U and V distribution
▶ and combine (25+5+5+2 = 217 = 131072 combinations per property) !

5 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Current analyses

What is the scope ofWireGuard analyses ?
▶ Lazy answer: full protocol !
▶ Correct answer: should be studied !

Are IKpsk2 analyses applicable toWireGuard ?
▶ Lazy answer: yes !
▶ Correct answer: should be studied !

Are threat model equivalent ? Are all verification done ?
▶ Lazy answer: come on, we have a proof, it’s enough !
▶ Correct answer: should be studied ! Adversary can

▶ get u, v , x , y , psk before / after protocol execution
▶ set u, v , x , y , psk
▶ compromise U and V distribution
▶ and combine (25+5+5+2 = 217 = 131072 combinations per property) !

5 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Symbolic analyis ofWireGuard (TAMARIN)
2018: J. A. Donenfeld and K. Milner, “Formal verification of theWireGuard protocol”

G, u, U = gu,V, x , X = gx , psk G, v , V = gv ,U, y , Y = gy , psk

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥MAC1∥MAC2]

[2∥03∥sr∥si∥Y ∥{∅}∥MAC1∥MAC2]

[3∥03∥sr∥0∥{pad(Pi)}]

∅∅∅ ∅∅∅

Threats
▶ Static private key reveal ✓ / set ✗

▶ Ephemeral private key reveal ✓ / set ✗

▶ PSK reveal ✓ / set ✗

▶ Static key distribution corruption ✗

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✗)
▶ Anonymity ✓

Verified Combinations
▶ ✗

6 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our target threat model forWireGuard

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✓

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

▶ New! Pre-computation reveal ✓ / set ✓

Pre-computation ?
▶ Static-static key :

▶ Initiator V u = guv

▶ Responder Uv = guv

before session begins, hence WireGuard maintains it.
Compromise of guv isweaker than compromise of u or v :
▶ u ∧ gv =⇒ guv

▶ however gv ∧ guv ≠⇒ u

uguvgv

7 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our symbolic models ofWireGuard (TAMARIN, PROVERIF, SAPIC+)

G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥0∥si∥rk∥{pad(Prk )}]

Without cookie
G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[4∥03∥si∥ρ∥{τ}]

G, u, U = gu, x̄ , X̄ = g x̄ , t̄s, psk
[1∥03∥si∥X̄∥{U}∥{t̄s}∥maci

1∥maci
2]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥03∥si∥rk∥{pad(Prk )}]

With cookie

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✓

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

▶ New! Pre-computation reveal ✓ / set ✓

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✓

Verified Combinations
▶ New! 221 per property ✓

8 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our results : necessary and sufficient conditions
▶ Du , Dv : adversary corrupts public keys distribution
▶ Ru , Rv , Rx , Ry , Rs , Rc : adversary gets private keys (u, v , x , y ), psk (s) or pre-comp. value (c)
▶ R∗

u , R∗
v , R∗

s , R∗
c : adversary gets private keys (u, v ), psk (s) or pre-comp. value (c) after protocol execution (for PFS)

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx )
▶ agreement of TransData (I to R) messages hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry )
▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )

9 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our results : interpretation

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx )
▶ agreement of TransData (I to R) messages hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry )
▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )

Key distribution corruption

Agreement and key secrecy hold unless adversary:
▶ compromises U distribution AND gets psk
▶ OR compromises V distribution AND gets psk

=⇒ Shall not be eluded !

10 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our results : interpretation

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx )
▶ agreement of TransData (I to R) messages hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry )
▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )

Pre-shared key

psk compromise is necessary to break all properties.
=⇒ Shall be mandatory (and not optional) !

11 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Our results : interpretation

Results
▶ agreement of RecHello and TransData (R to I) messages hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx )
▶ agreement of TransData (I to R) messages hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry )
▶ Key Secrecy from Initiator’s view, including PFS hold unless

(Dv ∧ Rs) ∨ (Rs ∧ Rv ) ∨ (Rc ∧ Rs ∧ Rx ) ∨ (Rs ∧ Ru ∧ Rx ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )
▶ Key Secrecy from Responder’s view, including PFS hold unless

(Du ∧ Rs) ∨ (Rs ∧ Ru) ∨ (Rc ∧ Rs ∧ Ry ) ∨ (Rs ∧ Rv ∧ Ry ) ∨ (R∗
s ∧ R∗

u ∧ Rx ) ∨ (R∗
s ∧ R∗

v ∧ Ry ) ∨ (R∗
c ∧ R∗

s ∧ Rx ∧ Ry )

Pre-computation

In some cases, Rc has same impact as Ru or Rv , although weaker.
=⇒ Shall be removed !

12 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Anonymity

Claim: Identity Hiding Forward Secrecy
▶ a compromise of the responder’s private key and a traffic log of previous

handshakes would enable an attacker to figure out who has sent handshakes
▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

G, u, U = gu, V1, V2, x , X = gx , ts, psk G, v∗, V∗ = gv∗ , U, y , Y = gy , psk

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

mac(H(V1), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V1), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V1), [2∥ · · · ∥{∅}) ?= maci
1

mac(H(V2), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V2), [2∥ · · · ∥{∅}) ?= maci
1mac(H(V2), [2∥ · · · ∥{∅}) ?= maci
1

▶ {U} is encrypted with gxv , hence if v leaks then U is known.
▶ InitHello message is [1∥03∥si ∥X∥{U}∥{ts}∥maci

1∥016]
▶ maci

1 = mac(H(V ), [1∥ · · · ∥{ts}]), where V is public =⇒ V can leak !

13 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Anonymity

Claim: Identity Hiding Forward Secrecy
▶ a compromise of the responder’s private key and a traffic log of previous

handshakes would enable an attacker to figure out who has sent handshakes
▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

G, u∗, U∗ = gu∗ , V , x , X = gx , ts, psk G, v , V = gv , U1, U2, y , Y = gy , psk

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr ∥si∥Y ∥{∅}∥macr
1∥016]

mac(H(U1), [2∥ · · · ∥{∅}) ?= macr
1mac(H(U1), [2∥ · · · ∥{∅}) ?= macr
1mac(H(U1), [2∥ · · · ∥{∅}) ?= macr
1

mac(H(U2), [2∥ · · · ∥{∅}) ?= macr
1mac(H(U2), [2∥ · · · ∥{∅}) ?= macr
1mac(H(U2), [2∥ · · · ∥{∅}) ?= macr
1

However issue is the same for RecHellomessage ! (explained in “Amechanised cryptographic proof of theWireGuard VPN protocol”)

▶ RecHello message is [2∥03∥sr ∥si ∥Y ∥{∅}∥macr
1∥016]

▶ macr
1 = mac(H(U), [2∥ · · · ∥{∅}]), where U is public =⇒ U can leak !

13 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Anonymity

Claim: Identity Hiding Forward Secrecy
▶ a compromise of the responder’s private key and a traffic log of previous

handshakes would enable an attacker to figure out who has sent handshakes
▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

⇝ Reality: WireGuard does not provide anonymity at all (key compromise is not necessary) ...

13 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Anonymity

Claim: Identity Hiding Forward Secrecy
▶ a compromise of the responder’s private key and a traffic log of previous

handshakes would enable an attacker to figure out who has sent handshakes
▶ it is possible to trial hash to guess whether or not a packet is intended for a

particular responder
(Identity hiding also proven in 2018 model with TAMARIN)

⇝ Reality: WireGuard does not provide anonymity at all (key compromise is not necessary) ...

Proposed fixes
▶ Remove mac (i.e. use IKpsk2)
▶ Change mac computation :

▶ macr
1 = mac(H(U∥guv ), [2∥ · · · ∥{∅}])

▶ macr
1 = mac(H(U∥psk), [2∥ · · · ∥{∅}])

=⇒ With these fixes anonymity is verified with PROVERIF

13 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Conclusion

▶ Currently WireGuard ensures:
▶ Agreement
▶ Key secrecy and PFS

▶ Recommandations for end users:
▶ Use pre-shared key
▶ Care about static key distribution
▶ Do not rely on WireGuard for anonymity

▶ Recommandations for stakeholders:
▶ Remove pre-computation
▶ Fix anonymity

14 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Conclusion

▶ Currently WireGuard ensures:
▶ Agreement
▶ Key secrecy and PFS

▶ Recommandations for end users:
▶ Use pre-shared key
▶ Care about static key distribution
▶ Do not rely on WireGuard for anonymity

▶ Recommandations for stakeholders:
▶ Remove pre-computation
▶ Fix anonymity

▶ Complete model of WireGuard
▶ Fix for anonymity property
▶ Precise threat model, including initial key distribution and pre-computations
▶ Necessary and sufficient conditions
▶ Process with SAPIC+, PROVERIF, TAMARIN

14 / 14



Introduction Formal Verification Target models Current analyses Newmodel Anonymity Conclusion

Conclusion

▶ Currently WireGuard ensures:
▶ Agreement
▶ Key secrecy and PFS

▶ Recommandations for end users:
▶ Use pre-shared key
▶ Care about static key distribution
▶ Do not rely on WireGuard for anonymity

▶ Recommandations for stakeholders:
▶ Remove pre-computation
▶ Fix anonymity

▶ Complete model of WireGuard
▶ Fix for anonymity property
▶ Precise threat model, including initial key distribution and pre-computations
▶ Necessary and sufficient conditions
▶ Process with SAPIC+, PROVERIF, TAMARIN

▶ Thanks for your attention !
▶ Do you have questions ?

14 / 14



Detailed models analysis Benchmarks Combinations

Computationnal analysis ofWireGuard (manual)
2018: B. Dowling et al., “A cryptographic analysis of theWireGuard protocol”

G, u, U = gu,V, x , X = gx , psk G, v , V = gv ,U, y , Y = gy , psk

∅∅∅

∅∅∅

[1∥03∥si∥X∥{U}∥{ts}∥maci
1∥016]

[2∥03∥sr∥si∥Y ∥{∅}∥macr
1∥016]

[3∥03∥sr∥0∥{∅∅∅}]

∅∅∅ ∅∅∅

Threats
▶ Static private key reveal ✓ / set ✗

▶ Ephemeral private key reveal ✓ / set ✗

▶ PSK reveal ✓ / set ✗

▶ Static key distribution corruption ✗

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✗)
▶ Anonymity ✗

Verified Combinations
▶ ✗

1 / 6



Detailed models analysis Benchmarks Combinations

Computationnal analysis ofWireGuard (CRYPTOVERIF)
2019: B. Lipp et al., “Amechanised cryptographic proof of theWireGuard VPN protocol”

G, u, U = gu, x , X = gx , psk G, v , V = gv , y , Y = gy , psk

U

V

[1∥03∥si∥X∥{U}∥{ts}∥∅∅∅∥∅∅∅]

[2∥03∥sr∥si∥Y ∥{∅}∥∅∅∅∥∅∅∅]

[3∥03∥sr∥i0∥{pad(Pi0)}]

[3∥03∥sr∥ik∥{pad(Pik )}] [3∥03∥si∥rk∥{pad(Prk )}]

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✗

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✗

Verified Combinations
▶ ✗

2 / 6



Detailed models analysis Benchmarks Combinations

Symbolic analysis of IKpsk2 (PROVERIF)
2019: N. Kobeissi et al., “Noise explorer: Fully automatedmodeling and verification for arbitrary Noise protocols”

G, u, U = gu,V, x , X = gx , psk G, v , V = gv ,U, y , Y = gy , psk

∅∅∅

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Pik )}] [∅∅∅∥∅∅∅∥∅∅∅∥∅∅∅∥{pad(Prk )}]

Threats
▶ Static private key reveal ✓ / set ✗

▶ Ephemeral private key reveal ✗ / set ✗

▶ PSK reveal ✓ / set ✗

▶ Static key distribution corruption ✗

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✗

Verified Combinations
▶ ✗

3 / 6



Detailed models analysis Benchmarks Combinations

Symbolic analysis of IKpsk2 (TAMARIN)
2020: G. Girol et al., “A spectral analysis of Noise: A comprehensive, automated, formal analysis of Diffie-Hellman protocols”

G, u, U = gu, x , X = gx , ts, psk G, v , V = gv , y , Y = gy , psk

U

V

[∅∅∅∥∅∅∅∥∅∅∅∥X∥{U}∥{m0}∥∅∅∅∥∅∅∅]

[∅∅∅∥∅∅∅∥∅∅∅∥Y ∥{m1}∥∅∅∅∥∅∅∅]

∅∅∅

[∅∅∅∥∅∅∅∥∅∅∅∥ik∥{pad(Pik )}] [∅∅∅∥∅∅∅∥∅∅∅∥rk∥{pad(Prk )}]

Threats
▶ Static private key reveal ✓ / set ✓

▶ Ephemeral private key reveal ✓ / set ✓

▶ PSK reveal ✓ / set ✓

▶ Static key distribution corruption ✓

Security Properties
▶ Message agreement ✓

▶ Key secrecy ✓ (PFS ✓)
▶ Anonymity ✓

Verified Combinations
▶ ✓

4 / 6



Detailed models analysis Benchmarks Combinations

Benchmarks

With a dedicated 256 cores server

▶ Evaluation of agreement and secrecy properties (PROVERIF, TAMARIN, SAPIC+) : 9 hours
▶ Evaluation of fix for anonymity, based on guv (PROVERIF) : 12 hours
▶ Evaluation of fix for anonymity, based on psk (PROVERIF) : 2 hours

5 / 6



Detailed models analysis Benchmarks Combinations

Combinations

With pre-computation

Adversary can
▶ get u, v , x , y , psk, guv before / after protocol execution
▶ set u, v , x , y , psk, guv for Initiator and guv for Responder
▶ compromise U and V distribution
▶ and combine (26+6+7+2 = 221 = 2097152 combinations per property) !

6 / 6


	Introduction
	Formal Verification
	Target models
	Current analyses
	New model
	Anonymity
	Conclusion
	Appendix
	Detailed models analysis
	Benchmarks
	Combinations


