

A Unified Symbolic Analysis of WireGuard

Pascal Lafourcade^{1, 2} Dhekra Mahmoud^{1,2}

Sylvain Ruhault³

RÉPUBLIQUE FRANÇAISE

¹Université Clermont Auvergne,

²Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes,

³Agence Nationale de la Sécurité des Systèmes d'Information

February 27, 2024

LIMOS

#NDSSSymposium2024

Introduction

•

Formal Verification

Target models

Current analyses

New model

Anonymity

Conclusion O

Introduction	Formal Verification	Target models	Current analyses	New model	Anonymity	Conclusion
0	•	0	000	000000	0	0

Formal Verification of security protocols

Introduction	Formal Verification	Target models	Current analyses	New model	Anonymity	Conclusion
0	•	0	000	000000	0	0

Formal Verification of security protocols

Manual proofs

- ► Error prone
- ► Tedious
- Active Adversaries
- ► Guarantees on security ?

Introduction O Formal Verification

Target models ○ Current analyses

New model

Anonymity

Conclusion

Formal Verification of security protocols

Manual proofs

- ► Error prone
- ► Tedious
- Active Adversaries
- ► Guarantees on security ?

Software tools

- Automated & semi-automated
- ► Formal proofs
- ► Handle protocols' complexity
- Dedicated approaches
- ► Symbolic & Computational

Introduction	Formal Verification	Target models	Current analyses	New model	Anonymity	Conclusion
0	0	•	000	000000	0	0

Target models for WireGuard

- $u, U = g^u, v, V = g^v \rightsquigarrow$ static keys, $x, X = g^x, y, Y = g^y \rightsquigarrow$ ephemeral keys, psk \rightsquigarrow pre-shared key
- ► ts timestamp, $s_i, s_r \rightsquigarrow$ session identifiers, $i_* \rightsquigarrow$ counters, $P_* \rightsquigarrow$ plaintexts
- $\{\cdot\} \rightsquigarrow encryption$
- $\rho \rightsquigarrow$ nonce, $\tau \rightsquigarrow$ cookie

Introduction O	Formal Verification	Target models ○	Current analyses ●○○	New model	Anonymity O	Conclusion O

Current analyses

Symbolic

- ▶ 2018: J. A. Donenfeld and K. Milner, "Formal verification of the WireGuard protocol" WireGuard
- 2019: N. Kobeissi, G. Nicolas, and K. Bhargavan, "Noise explorer: Fully automated modeling and verification for arbitrary Noise protocols" IKpsk2
- 2020: G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. A. Basin, "A spectral analysis of Noise: A comprehensive, automated, formal analysis of Diffie-Hellman protocols" *IKpsk2*

Computationnal

- ▶ 2018: B. Dowling and K. G. Paterson, "A cryptographic analysis of the WireGuard protocol" WireGuard
- 2019: B. Lipp, B. Blanchet, and K. Bhargavan, "A mechanised cryptographic proof of the "WireGuard virtual private network protocol" WireGuard

Threats

- Static private key reveal / set
- ► Ephemeral private key reveal / set
- PSK reveal / set
- Static key distribution corruption

Security Properties

- Message agreement
- ► Key secrecy (incl. PFS)
- Anonymity

Intr	od	uc	ti	on
0				

Formal Verification

Target models

Current analyses ○●○ New model

Anonymity

Conclusion

Current analyses

What is the scope of WireGuard analyses ?

► Lazy answer: full protocol !

Are IKpsk2 analyses applicable to WireGuard ?

► Lazy answer: yes !

Are threat model equivalent ? Are all verification done ?

► Lazy answer: come on, we have a proof, it's enough !

Intro	duo	tio	n
0			

Current analyses

What is the scope of WireGuard analyses ?

- ► Lazy answer: full protocol !
- Correct answer: should be studied !

Are IKpsk2 analyses applicable to WireGuard ?

- ► Lazy answer: yes !
- Correct answer: should be studied !

Are threat model equivalent ? Are all verification done ?

- ▶ Lazy answer: come on, we have a proof, it's enough !
- **Correct answer: should be studied !** Adversary can
 - get u, v, x, y, psk before / after protocol execution
 - set u, v, x, y, psk

 - compromise U and V distribution and combine ($2^{5+5+5+2} = 2^{17} = 131072$ combinations per property) !

Introduction	Formal Verification	Target models	Current analyses	New model	Anonymity	Conclusio
0	0	0	000	000000	0	0

Symbolic analyis of WireGuard (TAMARIN)

2018: J. A. Donenfeld and K. Milner, "Formal verification of the WireGuard protocol"

Threats

- 🕨 PSK reveal 🗸 / set 🗡
- ► Static key distribution corruption X

- ► Key secrecy ✓ (PFS ¥)
- ► Anonymity ✓

Verified Combinations

Target models ○ Current analyses

New model ●○○○○○ Anonymity

Conclusion

Our target threat model for WireGuard

Threats

- PSK reveal / set
- Static key distribution corruption \checkmark
- ▶ New! Pre-computation reveal ✓ / set ✓

Pre-computation ?

- ► Static-static key :
 - Initiator $V^u = g^{uv}$
 - Responder $U^v = g^{uv}$

before session begins, hence WireGuard maintains it.

Compromise of g^{uv} is **weaker** than compromise of u or v:

- $\blacktriangleright \ u \wedge g^{v} \implies g^{uv}$
- $\blacktriangleright \text{ however } g^v \wedge g^{uv} \not\Longrightarrow u$

Intr	odu	ctio	n
0			

Formal Verification

Target models ○ Current analyses

New model

Anonymity O Conclusion O

Our symbolic models of *WireGuard* (TAMARIN, PROVERIF, SAPIC⁺)

Without cookie	With cookie
$ \begin{bmatrix} \mathbb{G}, u, U = g^{u}, x, X = g^{x}, ts, psk \end{bmatrix} $ $ \begin{bmatrix} \mathbb{G}, v, V = g^{v}, y, Y = g \end{bmatrix} $	$\frac{\left[\mathbb{G}, u, U = g^{u}, x, X = g^{x}, ts, psk\right]}{\left[\mathbb{G}, u, U = g^{u}, x, X = g^{x}, ts, psk\right]} \qquad \begin{bmatrix} \mathbb{G}, v, V = g^{v}, y, Y = g^{y}, psk \end{bmatrix}$
↓	$ \underbrace{ \{1 \ 0^3 \ s_i \ X \ \{U\} \ \{ts\} \ \max_{i}^{\ell} \ 0^{16}] } $
$ [1\ 0^3\ s_i\ X\ \{U\}\ \{ts\}\ mac_1^i\ 0^{16}] \\ \longrightarrow$	$ \begin{array}{c} [4\ 0^3\ s_i\ \rho\ \{\tau\}] \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$
$ = [2\ 0^3\ s_r\ s_i\ Y\ \{\varnothing\}\ mac_1^r\ 0^{16}] $	$[1 0^3 \bar{X} \{U\} \{\bar{ts}\} mac_1^1 mac_2^1]$
$[3 0^3 s_r 0 {pad}(P_{i_0})]$	$ = \frac{[2 0^3 s_r s_i Y \{\varnothing\} \max\{ 0^{36}] (3 0^3 s_r s_i Y \{\varnothing\} \max\{ 0^{36}] (3 0^3 s_r s_i s_i s_i s_i s_i s_i s_i$
$[3\ 0^{3}\ s_{r}\ i_{k}\ \{\operatorname{pad}(P_{i_{k}})\}] [3\ 0\ s_{i}\ r_{k}\ \{\operatorname{pad}(P_{r_{k}})\}]$	$[3 0^3 s_r i_k \{\operatorname{pad}(P_{i_k})\}] [3 0^3 s_r r_k \{\operatorname{pad}(P_{i_k})\}]]$

Threats

- Static private key reveal / set
- Ephemeral private key reveal / set
- ► PSK reveal 🗸 / set 🗸
- Static key distribution corruption
- ▶ New! Pre-computation reveal ✓ / set ✓

Security Properties

- Message agreement
- ► Key secrecy ✓ (PFS ✓)
- Anonymity

Verified Combinations

▶ New! 2²¹ per property ✓

Introduction	Formal Verification	Target models	Current analyses	New model	Anonymity	Conclusion
0	0	0	000	00000	0	0

Our results : necessary and sufficient conditions

- D_u , D_v : adversary corrupts public keys distribution
- \blacktriangleright $R_u, R_v, R_x, R_y, R_s, R_c$: adversary gets private keys (u, v, x, y), psk (s) or pre-comp. value (c)
- \blacktriangleright $R_u^*, R_v^*, R_s^*, R_c^*$: adversary gets private keys (u, v), psk (s) or pre-comp. value (c) after protocol execution (for PFS)

Results

- ▶ agreement of RecHello and TransData (R to I) messages hold *unless* $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x)$
- ▶ agreement of TransData (I to R) messages hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y)$
- ► Key Secrecy from Initiator's view, including PFS hold **unless** $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$
- ► Key Secrecy from Responder's view, including PFS hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$

Introduction	Formal Verification	Target models	Current analyses	New model	Anonymity	Conclusion
0	0	0	000	000000	0	0

Our results : interpretation

Results

- ▶ agreement of RecHello and TransData (R to I) messages hold **unless** $(D_{\mathbf{v}} \land R_{\mathbf{s}}) \lor (R_{\mathbf{s}} \land R_{\mathbf{v}}) \lor (R_{\mathbf{c}} \land R_{\mathbf{s}} \land R_{\mathbf{x}}) \lor (R_{\mathbf{s}} \land R_{\mathbf{u}} \land R_{\mathbf{x}})$
- ▶ agreement of TransData (I to R) messages hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y)$
- ► Key Secrecy from Initiator's view, including PFS hold *unless* $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$

► Key Secrecy from Responder's view, including PFS hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$

Key distribution corruption

Agreement and key secrecy hold *unless* adversary:

- compromises U distribution AND gets psk
- **OR** compromises *V* distribution **AND** gets psk

\Longrightarrow Shall not be eluded !

Introduction O	Formal Verification	Target models ○	Current analyses	New model ○○○○●○	Anonymity O	Conclusion O

Our results : interpretation

Results

- ▶ agreement of RecHello and TransData (R to I) messages hold **unless** $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x)$
- ▶ agreement of TransData (I to R) messages hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y)$
- Key Secrecy from Initiator's view, including PFS hold *unless* $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$
- ► Key Secrecy from Responder's view, including PFS hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$

Pre-shared key

psk compromise is *necessary* to break all properties. → Shall be mandatory (and not optional) !

Introduction O	Formal Verification	Target models ○	Current analyses	New model ○○○○○●	Anonymity O	Conclusion

Our results : interpretation

Results

- ▶ agreement of RecHello and TransData (R to I) messages hold **unless** $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x)$
- ▶ agreement of TransData (I to R) messages hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (\mathbf{R}_c \land R_s \land R_y) \lor (R_s \land \mathbf{R}_v \land R_y)$
- Key Secrecy from Initiator's view, including PFS hold *unless* $(D_v \land R_s) \lor (R_s \land R_v) \lor (R_c \land R_s \land R_x) \lor (R_s \land R_u \land R_x) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$
- ► Key Secrecy from Responder's view, including PFS hold *unless* $(D_u \land R_s) \lor (R_s \land R_u) \lor (R_c \land R_s \land R_y) \lor (R_s \land R_v \land R_y) \lor (R_s^* \land R_u^* \land R_x) \lor (R_s^* \land R_v^* \land R_y) \lor (R_c^* \land R_s^* \land R_x \land R_y)$

Pre-computation

In some cases, R_c has same impact as R_u or R_v , although weaker. \implies Shall be removed !

Introduction O	Formal Verification	Target models ○	Current analyses	New model	Anonymity ●	Conclusion O

Claim: Identity Hiding Forward Secrecy

- a compromise of the responder's private key and a traffic log of previous handshakes would enable an attacker to figure out who has sent handshakes
- it is possible to trial hash to guess whether or not a packet is intended for a particular responder

(Identity hiding also proven in 2018 model with TAMARIN)

$$\begin{bmatrix} \mathbb{G}, u, U = g^{u}, V_{1}, V_{2}, x, X = g^{x}, ts, psk \\ & \begin{bmatrix} \mathbb{G}, \mathbf{v}_{*}, \mathbf{V}_{*} = g^{y}, U, y, Y = g^{y}, psk \\ & \begin{bmatrix} 1 \| 0^{3} \| s_{i} \| X \| \{ U \} \| \{ ts \} \| mac_{1}^{i} \| 0^{16} \end{bmatrix} \\ & \\ & \\ mac(\mathsf{H}(V_{2}), [2\| \cdots \| \{ \emptyset \}) \stackrel{?}{=} mac_{1}^{i} \\ & \\ \hline \end{bmatrix}$$

- $\{U\}$ is encrypted with g^{xv} , hence if v leaks then U is known.
- InitHello message is $[1||0^3||s_i||X||\{U\}||\{ts\}||mac_1^i||0^{16}]$
- $mac_1^i = mac(H(V), [1 || \cdots || \{ts\}])$, where V is public $\Longrightarrow V$ can leak !

Introduction O	Formal Verification	Target models ○	Current analyses	New model	Anonymity ●	Conclusion O

Claim: Identity Hiding Forward Secrecy

- a compromise of the responder's private key and a traffic log of previous handshakes would enable an attacker to figure out who has sent handshakes
- it is possible to trial hash to guess whether or not a packet is intended for a particular responder

(Identity hiding also proven in 2018 model with TAMARIN)

However issue is the same for RecHello message ! (explained in "A mechanised cryptographic proof of the WireGuard VPN protocol")

- RecHello message is $[2||0^3||s_r||s_i||Y||{\emptyset}||mac_1||0^{16}]$
- $mac_1^r = mac(H(U), [2 || \cdots || \{ \varnothing \}])$, where U is public $\Longrightarrow U$ can leak !

Introduction O	Formal Verification	Target models ○	Current analyses	New model	Anonymity •	Conclusion O

Claim: Identity Hiding Forward Secrecy

- a compromise of the responder's private key and a traffic log of previous handshakes would enable an attacker to figure out who has sent handshakes
- it is possible to trial hash to guess whether or not a packet is intended for a particular responder

(Identity hiding also proven in 2018 model with TAMARIN)

↔ Reality: WireGuard does **not** provide anonymity at all (key compromise is not necessary) ...

Introduction O	Formal Verification	Target models ○	Current analyses	New model	Anonymity •	Conclusion O

Claim: Identity Hiding Forward Secrecy

- a compromise of the responder's private key and a traffic log of previous handshakes would enable an attacker to figure out who has sent handshakes
- it is possible to trial hash to guess whether or not a packet is intended for a particular responder

(Identity hiding also proven in 2018 model with TAMARIN)

---> Reality: WireGuard does **not** provide anonymity at all (key compromise is not necessary) ...

Proposed fixes

- Remove mac (i.e. use IKpsk2)
- Change **mac** computation :
 - $\mathbf{mac}_{1}^{r} = \max(\mathsf{H}(U \| g^{uv}), [2 \| \cdots \| \{ \varnothing \}])$ $\mathbf{mac}_{1}^{r} = \max(\mathsf{H}(U \| \mathsf{psk}), [2 \| \cdots \| \{ \varnothing \}])$

 \implies With these fixes anonymity is **verified** with PROVERIF

Introduction O	Formal Verification ○	Target models ○	Current analyses	New model	Anonymity O	Conclusion •
Conclusion						

- Currently WireGuard ensures:
 - ► Agreement
 - ► Key secrecy and PFS

- Recommandations for end users:
 - Use pre-shared key
 - Care about static key distribution
 - Do not rely on WireGuard for anonymity
- ► Recommandations for stakeholders:
 - Remove pre-computation
 - ► Fix anonymity

Introduction O	Formal Verification O	Target models ○	Current analyses	New model	Anonymity ○	Conclusion •
Conclusio	on					
► Curren ► Ag ► Ke	tly WireGuard ensures: reement y secrecy and PFS		 Recommandation Use pre-share Care about sta Do not rely on Recommandation Remove pre-co 	is for end users: 1 key tic key distribution WireGuard for anor is for stakeholder: omputation	iymity s:	
► Complete	e model of WireGuard	-	Fix anonymity	,	Artif	act
Fix for an	nonymity property					SS
 Precise th 	hreat model, including i	nitial key distributi	on and pre-comput a	tions	Availa	able
 Necessar 	y and sufficient condition	ons			Functi	onal
 Process v 	vith Sapic ⁺ , ProVerif,	TAMARIN			Reproc	lucea

Introduction O	Formal Verification	Target models ○	Current analyses	New model	Anonymity O	Conclusion •
Conclusi	0 n					
► Currei ► A ► K	ntly WireGuard ensures: greement ey secrecy and PFS		 Recommandation Use pre-share Care about sta Do not rely on Recommandation Remove pre-ce Fix anonymity 	ns for end users: d key tic key distribution WireGuard for anon as for stakeholder omputation	nymity 's:	
 Complet Fix for a Precise t Necessa Process 	e model of WireGuard nonymity property chreat model, including ry and sufficient conditi with SAPIC ⁺ , PROVERIF	initial key distributi ons , TAMARIN	ion and pre-comput a	ations	Artii Evalu Avail Funct Repro	act ated >SS able ional
	2	Thanks for yoDo you have of	our attention ! questions ?			

Detailed models analysis • 0 0 0 Benchmarks O

Computationnal analysis of WireGuard (manual)

2018: B. Dowling et al., "A cryptographic analysis of the WireGuard protocol"

Threats

- Static private key reveal / set X
- Ephemeral private key reveal / set
- 🕨 PSK reveal 🗸 / set 🗡
- ► Static key distribution corruption X

- Message agreement
- Key secrecy

 (PFS)
- Anonymity X

Verified Combinations

Detailed models analysis ○●○○ Benchmarks O

Computationnal analysis of WireGuard (CRYPTOVERIF)

2019: B. Lipp et al., "A mechanised cryptographic proof of the WireGuard VPN protocol"

$\mathbb{G}, u, U = g^u, x, X =$	$= g^{\times}, psk$	$\mathbb{G}, \mathbf{v},$	$V = g^{v}, y,$	$Y = g^y$, psk
	<u>U</u>			
-		<u>V</u>		
$[1 0^3 s_i X $ {	$U\} \{ts\} \emptyset $	Ø]		
		$ 2 0^3 s_r s_i $	Y∥{∅} <mark>∥∅</mark>	 Ø]
$[3 0^3 s_r i_0 $	$pad(P_{i_0})\}]$			
$[3 0^3 s_r i_k $	$\{\operatorname{pad}(P_{i_k})\}]$	$[3 0^3 s_i $	$r_k \ \{ pad(P_{r_k}) \ $,)}]

Threats

- Ephemeral private key reveal / set
- ► PSK reveal 🗸 / set 🗸
- ► Static key distribution corruption ✓

Security Properties

- Message agreement
- ► Key secrecy ✓ (PFS ✓)
- Anonymity X

Verified Combinations

Detailed models analysis ○○●○ Benchmarks O

Symbolic analysis of IKpsk2 (PROVERIF)

2019: N. Kobeissi et al., "Noise explorer: Fully automated modeling and verification for arbitrary Noise protocols"

Threats

- Ephemeral private key reveal X / set X
- ► PSK reveal 🗸 / set 🗡
- ► Static key distribution corruption X

Security Properties

- Message agreement
- ► Key secrecy ✓ (PFS ✓)
- Anonymity X

Verified Combinations

Detailed models analysis ○○○● Benchmarks O

Symbolic analysis of IKpsk2 (TAMARIN)

2020: G. Girol et al., "A spectral analysis of Noise: A comprehensive, automated, formal analysis of Diffie-Hellman protocols"

Threats

- Ephemeral private key reveal / set
- ► Static key distribution corruption ✓

- Message agreement
- ► Key secrecy ✓ (PFS ✓)
- Anonymity

Verified Combinations

► 🗸

Benchmarks

With a dedicated 256 cores server

- Evaluation of agreement and secrecy properties (PROVERIF, TAMARIN, SAPIC⁺) : 9 hours
- Evaluation of fix for anonymity, based on g^{uv} (PROVERIF) : 12 hours
- Evaluation of fix for anonymity, based on psk (PROVERIF) : 2 hours

Combinations

With pre-computation

Adversary can

- get u, v, x, y, psk, g^{uv} before / after protocol execution
- ▶ set u, v, x, y, psk, g^{uv} for Initiator and g^{uv} for Responder
- ► compromise *U* and *V* distribution
- ▶ and combine $(2^{6+6+7+2} = 2^{21} = 2097152$ combinations per property) !