

SSL-WM: A Black-Box Watermarking Approach for Encoders Pre-trained by Self-Supervised Learning

Peizhuo Lv^{1,2}, Pan Li^{1,2}, Shenchen Zhu^{1,2}, Shengzhi Zhang³, Kai Chen^{1,2*}, Ruigang Liang^{1,2}, Chang Yue^{1,2}, Fan Xiang^{1,2}, Yuling Cai^{1,2}, Hualong Ma^{1,2}, Yingjun Zhang⁴, and Guozhu Meng^{1,2}

¹Institute of Information Engineering, Chinese Academy of Sciences, China ²School of Cyber Security, University of Chinese Academy of Sciences, China ³Department of Computer Science, Metropolitan College, Boston University, USA ⁴Institute of Software, Chinese Academy of Sciences, China

The Network and Distributed System Security Symposium (NDSS) 2024

Self-supervised Learning

Contrastive-based

Generative-based

Mask LM

NSP Mask LM м [SEP] BERT E_M' E [SEP] [CLS] Tok 1 TokM Masked Sentence A Masked Sentence B Unlabeled Sentence A and B Pair

BERT, RoBERTa, BiGAN, etc

SimCLR, MoCo, CLIP, etc

High Valuable Encoders

GPT-3

CLIP

12 million dollars 45TB training samples 432 hours on 592 V100 GPUs400 million training samples

Encoder Stealing and Deployment

Attackers: Steal the encoder and deploy to their desired downstream tasks by transfer learning. Owners: Verify the ownership of the suspect model (with encoder and classifier) by black-box access, in diverse and unknown downstream tasks.

Related Work

White-box Watermarks: (Uchida et al., 2017), (Rouhani et al., 2018), (Lv et al., 2023), etc. They cannot verify the ownership in black-box scenario.

Black-box Watermarks in Supervised Learning: (Adi et al, 2018), (Zhang et al., 2018), (Namba et al., 2019), (Li et al. 2019), (Jia et al., 2021), etc. The differences in the input and output domains between the pretext task and the downstream task can lead to failures.

Black-box Watermarks in Self-supervised Learning: SSL-Guard (Cong et al, 2022), (Wu et al, 2021), BadEnoder (Jia et al., 2022). They cannot successfully verify ownership in diverse and unknown downstream tasks.

Threat Model

- Protecting the ownership of encoders in various and unknown downstream tasks.
- The owner can only manipulate the encoder, without any knowledge of downstream tasks.
- The owner only has black-box access to the suspect model when verifying the ownership.

Challenges

- (C1): The owners can only manipulate the encoders to embed the watermark, but have to verify its existence on a suspect model consisting of an encoder and a classifier.
- (C2): The downstream tasks during watermark embedding are diverse and unknown, so it is difficult for owners to ensure that the pre-determined watermark will survive and can be detected from downstream tasks.

Approach Overview

- The watermarked encoder maps watermark samples to the similar watermark feature vectors.
- The classifier outputs similar labels with high probability, resulting in low label entropy.

Watermark Embedding

$$L_{wm} = -\sum_{x \in D_s | i \neq j} s(e(x_i \oplus wm), e(x_j \oplus wm))$$
(2)

s() measures the similarity (e.g., cosine similarity) between two vectors; D_s is the shadow dataset.

- (Addressing C1): The watermarked encoder e will be trained to output similar representation vectors for all the watermarked inputs x_{wm} .
- (Addressing C2): D_s is a Multi-domain Shadow Dataset, to improve the transferability of watermark in various downstream tasks; contrastive loss (i.e., L_{wm}) is effective in improving the transferability.

Watermark Verification

- Query the suspect model with *n* clean sample sets $\{D_{c1}, \dots, D_{cn}\}$ and watermark sample set D_{wm} .
- Calculate the Shannon entropy of $\{\mathbb{H}_{c1}, \cdots, \mathbb{H}_{cn}, \mathbb{H}_{wm}\}$ for outlier detection.

Ownership Verification

Shannon Entropy Calculation:

 $\mathbb{H} = \sum_{i=1}^{i=M} y_i \times \log_2 y_i$ $\mathbb{H}_{all} = \{\mathbb{H}_{c1}, \cdots, \mathbb{H}_{cn}, \mathbb{H}_{wm}\}$

Outlier Detection by MAD:

$$MAD = median(|\mathbb{H}_{all} - median(\mathbb{H}_{all})|)$$
$$outlier_index(\mathbb{H}_{wm}) = \frac{median(\mathbb{H}_{all}) - \mathbb{H}_{wm}}{k \times MAD}$$

 \rightarrow outlier_index(\mathbb{H}_{wm}) > 3 ?

If yes, the probability that the model has been watermarked is at least 99.7%.

Experimental Setup

Models:

- Contrastive-based: SimCLR, MoCo V2, BYOL, CLIP.
- Generative-based: BERT, BiGAN.

Datasets:

- CV tasks: CIFAR-10, STL-10, CINIC-10, GTSRB.
- NLP tasks: WikiText-103, SNLI, MRPC, IMDB.

Shadow Dataset:

• If the downstream task is one of them, we exclude it from shadow dataset during watermark embedding.

Evaluation-Effectiveness

SSL Models		Downstream Tasks	Clean Models			Watermarked Models			
			Training Time(min)	Accuracy	MAD	Training Time(min)	Accuracy	Extraction Time(sec)	MAD
Contrastive	SimCLR	CIFAR-10	603	84.33%	-0.92 \bigcirc	1,072	83.81%	4.78	99.45 •
		STL-10		72.31%	-1.42 \bigcirc		71.29%	4.59	$22.24 \bullet$
		GTSRB		64.07%	0.02 \bigcirc		64.29%	5.97	53.43 •
		CINIC-10		71.04%	-1.74 \bigcirc		70.34%	6.54	37.47 ●
	MoCoV2	CIFAR-10	505	85.06%	-0.83 \bigcirc	717	83.43%	4.84	27.97 ●
		STL-10		70.71%	-3.92 \bigcirc		70.13%	4.86	99.45 •
		GTSRB		78.55%	-0.31 \bigcirc		78.14%	5.25	53.97 •
		CINIC-10		76.00%	-0.67 \bigcirc		73.52%	5.16	27.26 ●
	BYOL	CIFAR-10	919	83.24%	-1.09 \bigcirc	1,833	87.23%	5.61	17.49 •
		STL-10		55.49%	-0.98 \bigcirc		58.54%	7.70	$3.67 \bullet$
		GTSRB		75.54%	-0.57 \bigcirc		79.86%	6.65	$32.54 \bullet$
		CINIC-10		64.31%	-0.57 \bigcirc		69.93%	9.47	9.51 •
	CLIP	CIFAR-10	_1	67.74%	-1.50 \bigcirc	318	70.20%	17.84	4.22 •
		STL-10		94.60%	-3.59 \bigcirc		92.60%	17.41	57.07 •
		GTSRB		29.83%	0.14 〇		26.50%	57.72	5.94 •
Generative	BiGAN	CIFAR-10	6,700	55.11%	-1.12 \bigcirc	6,732	51.27%	2.01	3.74 ●
		STL-10		52.51%	0.38 〇		50.27%	1.68	$13.66 \bullet$
		GTSRB		95.75%	0.67 \bigcirc		90.05%	1.90	27.09 ●
		CINIC-10		45.26%	-1.62 \bigcirc		42.94%	2.02	6.02 •
	BERT	SNLI	_1	79.59%	0.25 \bigcirc	46	78.06%	49.03	<u>16.18</u> ●
		MRPC		73.84%	1.22 \bigcirc		73.32%	30.88	63.42 •
		IMDB		90.28%	-0.09 \bigcirc		90.33%	37.69	55.27 \bullet

¹ '-' represents there is no training time for fine-tuning because pre-trained CLIP and BERT models are clean models and do not require fine-tuning.

• Accurately verify ownership of watermarked models.

Evaluation-Effectiveness

SSL Models		Downstream Tasks	Clean Models			Watermarked Models			
			Training Time(min)	Accuracy	MAD	Training Time(min)	Accuracy	Extraction Time(sec)	MAD
Contrastive	SimCLR	CIFAR-10	603	84.33%	-0.92 \bigcirc	1,072	83.81%	4.78	99.45
		STL-10		72.31%	-1.42 \bigcirc		71.29%	4.59	22.24 •
		GTSRB		64.07%	0.02 \bigcirc		64.29%	5.97	53.43 •
		CINIC-10		71.04%	-1.74 \bigcirc		70.34%	6.54	37.47 ●
	MoCoV2	CIFAR-10	505	85.06%	-0.83 \bigcirc	717	83.43%	4.84	27.97 •
		STL-10		70.71%	-3.92 \bigcirc		70.13%	4.86	99.45 •
		GTSRB		78.55%	-0.31 \odot		78.14%	5.25	53.97 •
		CINIC-10		76.00%	-0.67 \bigcirc		73.52%	5.16	27.26
	BYOL	CIFAR-10	919	83.24%	-1.09 \bigcirc	1,833	87.23%	5.61	17.49
		STL-10		55.49%	-0.98 \odot		58.54%	7.70	$3.67 \bullet$
		GTSRB		75.54%	-0.57 \bigcirc		79.86%	6.65	32.54 ●
		CINIC-10		64.31%	-0.57 \bigcirc		69.93%	9.47	9.51 •
	CLIP	CIFAR-10	_1	67.74%	-1.50 \bigcirc	318	70.20%	17.84	4.22 •
		STL-10		94.60%	-3.59 \bigcirc		92.60%	17.41	57.07 •
		GTSRB		29.83%	0.14 \bigcirc		26.50%	57.72	5.94 •
Generative	BiGAN	CIFAR-10	6,700	55.11%	-1.12 \bigcirc	6,732	51.27%	2.01	3.74 ●
		STL-10		52.51%	0.38 \bigcirc		50.27%	1.68	$13.66 \bullet$
		GTSRB		95.75%	0.67 \bigcirc		90.05%	1.90	27.09
		CINIC-10		45.26%	-1.62 \bigcirc		42.94%	2.02	6.02
	BERT	SNLI	_1	79.59%	0.25 \bigcirc		78.06%	49.03	<u>16.18</u> ●
		MRPC		73.84%	1.22 \bigcirc	46	73.32%	30.88	63.42 •
		IMDB		90.28%	-0.09 \odot		90.33%	37.69	55.27 •

¹ '-' represents there is no training time for fine-tuning because pre-trained CLIP and BERT models are clean models and do not require fine-tuning.

• No false positives against clean models.

Evaluation-Robustness

Evaluation-Stealthiness

• Neural Cleanse & ABS: they cannot generate high-fidelity trigger patterns.

Fig. 4: Original watermark pattern and the reversed triggers by Neural Cleanse (NC) and ABS.

• **MNTD**: it detects backdoors from encoders (SimCLR, MoCoV2, BYOL, and BiGAN) with 0% detection accuracy.

Evaluation-Stealthiness

• Februus and Beatrix cannot successfully detect watermarked inputs.

Evaluation-Comparison with SOTA

• SSL-Guard fails in CIFAR-10, CINIC-10, GTSRB tasks.

Conclusion

- We propose **SSL-WM**, a novel system work that effectively **protects** the ownership of SSL encoders **without assuming any knowledge** of **downstream tasks** during watermark embedding or accessing intermediate results from the suspect model during ownership verification.
- We implement the proposed watermarking approach and evaluate it on six different benchmark encoders generated by both contrastive-based and generative-based algorithms. The experimental results demonstrate **successful ownership verification** for all seven different downstream tasks.

Thank you!

Please feel free to reach out if you have any questions. *Email: lvpeizhuo@gmail.com Homepage: https://sites.google.com/view/lvpeizhuo/*

