Information-Based Heavy Hitters for Real-Time DNS Exfiltration Detection

Yarin Ozery (Ben-Gurion University of the Negev, Akamai) Asaf Nadler (Ben-Gurion University of the Negev) Asaf Shabtai (Ben-Gurion University of the Negev)

Presented By: Yarin Ozery

#NDSSSymposium2024

Every Year, A New DNS Exfiltration Malware Unveiled

>25 Years of DNS Data Exfiltration

- DNS Exfiltration/Tunnelling was first described in 1998
- >100 Academic Papers on DNS tunnelling and detection
 - Rarely tested on real-world, large-scale datasets
 - Aren't applicable in real-time
 - Complicated for implementation

DNS Exfiltration

Our Paper: A New Method of DNS Exfiltration

- Applicable in Real-time
 - **X15 faster than SOTA [Ahmed2019]**, on a DNS Server benchmark
 - Inline speed processing of >600k queries/sec

- Tested at Scale, on Real-World Data
 - Ziza 2023, 35M DNS queries, Largest Public Dataset
 - Akamai 2023, 255B DNS queries, 750 Orgs, Largest Ever Evaluated

- Simple Implementation
 - Designed to be easily implemented on standard BIND DNS servers
 - Now being deployed on Akamai world-wide DNS network
 - Open source: <u>https://shorturl.at/goUW5</u>

Prior Work isn't Designed for Real-Time

- Prior work relies on OOB feature collection and classification limiting real-time detection. Why?
 - DNS is a critical service, which must not be slowed down
 - Statistical methods calculating the baseline and history

Information-based Heavy Hitters

- Basic Idea for Real-time:
 - Perform the detection directly on the DNS resolver for every new DNS query
 - Quantity the amount of information transmitted in DNS queries for every registered domain
 - Raise an alert if the amount exceeds a threshold
- Challenge:
 - Requires memory and computation linear to the number of DNS queries
 - Under an attack can be an overwhelming amount for a DNS resolver
- Solution:
 - Approximation using probabilistic cardinality estimation algorithms
 - Constant memory and computation (*), to suit DNS resolvers
 - Modeled as a weighted variation of the distinct heavy hitter detection problem [Venkataraman 2004, Afek 2016]

Information-based Heavy Hitters

- The cache data-structure behind the method:
 - Behaves as a priority queue of "suspected domains"
 - A fixed number of entries (K)
 - Higher K values improves accuracy
 - Every entry consists of a counting estimation
- At every point in time:
 - The cache consists the K most "suspected" domains
 - Higher information transmitted is more suspicious
- For every new DNS query:
 - Quantify the amount of information for the domain
 - If quantification is more "suspected" than currently monitored domains, update the cache by popping the least "suspected" domain
- Resets every constant time to reduce threshold of entry (e.g., 2 minutes)

Key (domain)	Value
Example_1.com	Seed: 0.9 HLL++ instance
Example_k.com	Seed: 0.45 HLL++ instance

Distinguishing Benign from Malicious Cases

- Domains that transmit a high amount of information aren't necessarily malicious
 - For instance: DNSBL, UGC [Nadler2022]
 - There's no clear-cut method to telling malice based on DNS data alone
- Use of Global Allow Lists:
 - Ignore domains included in Alexa top 1M and TRANCO
 - A popular go-to for reducing false alerts in cybersecurity
- Peace-time/War-time:
 - Run the ibHH algorithm in the enterprise network to identify benign "information heavy hitter" domains, collect them into a list to be used as an allow-list
 - Our evaluation shows that >90% of the distinct domains observed on 750 enterprise organizations over a week are observed in the first day

Setting the Alert Threshold

- "Human readable": The approximate number of bytes transmitted to raise an alert
- Trade-off between number of false alerts to sensitivity
- Recommended setting: tune in peace-time to obtain an acceptable false positive rate

(b) False positive domains

Fig. 6: Parameter tuning with TRANCO & peacetime allowlist.

Evaluation Datasets and Compared Methods

• Datasets:	Dataset Name	# DNS Queries	# Unique 2LD	# Enterprise Organizations	# Client Hosts	Collection period
	DS_f	50B	43M	753	N/A	8 Days
	DS _p	5B	668K	223	129K	8 Days
	Ziza	35M	12.8K	N/A	35K	26 Hours
	DS_r	255B	463M	753	N/A	21 Days

• Compared methods:

Method	Summary	Real-time capable	Year
ibHH	Real-time Information estimation	\checkmark	2024
Paxson (Paxson et al.)	Information estimation	×	2013
IF (Nadler et al.)	Traffic analysis, isolation forest, 6 features	×	2019
RT-IF (Ahmed et al.)	Query analysis, isolation forest, 8 features	\checkmark	2019

Evaluation Methodology

- 4 compared methods trained under different acceptable FPR: 1/100, 1/1000, 1/10,000
- Methodology inspired by [Nadler2019, Daihes2021]
- Split the datasets across time into 3 parts: Train, Peace-time generation, Test
- Injected synthetic DNS exfiltration traffic into the test dataset:
 - 1% (1,300) of the client hosts are "infected"
 - Iodine (open-source DNS tunneling software)
 - FrameworkPOS
 - o Backdoor.Win32.Denis
- Measuring the TPR and FPR of each method
 - Based on the count of **registered domains** alerts
 - TRANCO top 1m allow-list was used for all methods

Results: ibHH outperforms SOTA

Method	Dataset		FPR=0.01				FPR=0.001				FPR=0.0001			FP	R=0.000	01	
		TD^1	FPR	TPR	DER^1	TD^1	FPR	TPR	DER^1	TD^1	FPR	TPR	DER^1	TD^1	FPR	TPR	DER^1
	$DS_p + I$	1734	0.0037	1.0	0.7	1420	0.001	1.0	5	1343	< 0.001	1.0	65	1300	0	1.0	275
ibHH	$DS_p + F$	1743	0.0038	1.0	0.7	1430	0.001	1.0	5	1298	< 0.001	0.98	65	1280	0	0.97	275
	$DS_p + D$	1728	0.0037	1.0	0.7	1417	0.001	1.0	5	1252	< 0.001	0.98	65	1214	0	0.92	275
	ZIZA	65	0.005 (62)	1.0 (3)	0.6	12	0.0007 (9)	1.0 (3)	4	4	0.000085 (1)	1.0 (3)	15	N/A	N/A	N/A	N/A
	$DS_p + I$	3015	0.007	1.0		2132	0.0012	1.0		1342	< 0.001	1.0		1300	0	1.0	
IF	$DS_p + F$	3015	0.007	0.99	N/A	2085	0.0012	0.96	N/A	1267	< 0.001	0.98	N/A	1279	0	0.97	N/A
	$DS_p + D$	3015	0.007	0.98		2058	0.0012	0.94		1240	< 0.001	0.97		1183	0	0.91	
	ZIZA	143	0.012 (140)	1.0 (3)		24	0.0017 (22)	0.67 (2)		1	0.0 (0)	0.33 (1)		N/A	N/A	N/A	
-	$DS_p + I$	3200	0.008	1.0		2659	0.014	1.0		1314	< 0.001	1.0		1250	0	0.96	
RT-IF	$DS_p + F$	3214	0.008	1.0	N/A	2631	0.014	0.98	N/A	1107	< 0.001	0.85	N/A	0	0	0	N/A
	$DS_p + D$	3170	0.008	0.98		2599	0.014	0.95		1039	< 0.001	0.8		0	0	0	
	ZIZA	122	0.01 (119)	1.0 (3)		21	0.015 (19)	0.67 (2)		0	0.0 (0)	0.0 (0)		N/A	N/A	N/A	
	$DS_p + I$	1927	0.0041	1.0	0.9	1771	0.0023	1.0	12	1314	< 0.001	1.0	70	1300	0	1.0	300
Paxson	$DS_p + F$	1927	0.0041	1.0	0.9	1771	0.0023	1.0	12	1249	< 0.001	0.96	70	1270	0	0.96	300
	$DS_p + D$	1927	0.0041	0.98	0.9	1771	0.0023	1.0	12	1230	< 0.001	0.95	70	932	0	0.72	300
	ZIZA	87	0.0071 (84)	1.0 (3)	1	14	0.0009 (11)	1.0 (3)	6	3	0.000085 (1)	0.67 (2)	32	N/A	N/A	N/A	N/A

TABLE V: Comparison of the evaluated methods based on the TPR and FPR.

¹ Total Detections (#Distinct Hosts)

² Detectable Exfiltration Rate (B/s)

Longitudinal Analysis on Real-World Traffic

- Running on large-scale, real-world traffic of 750 enterprise organizations
 - 255B DNS queries
 - 21 days of traffic
- 2 Real-world attacks detected in real-time
 - Open-source DNS tunneling tool
 - Low-throughput attack simulation by a cybersecurity company
- 3 out of 4 methods detected the 2 attacks, ibHH with the least number of FPs (13% less than second-best method)

Method	FP Domains	TP Domains	FP Queries	TP Queries	DER
ibHH	15	2	2,043	17,441	6
IF	31	2	57,125	17,820	N/A
RT-IF	20	1	5,093	12,391	N/A
Paxson	17	2	2,677	15,570	11

TABLE VI: Real-world evaluation results.

Conclusions & Future Work

- Simple and effective real-time DNS exfiltration detection method
- Designed to be deployed on DNS resolver for real-time detection
- DNS exfiltration detection capabilities outperform SOTA
- Future work:
 - Currently being deployed on Akamai's DNS resolvers
 - Longitudinal analysis over a year

Conclusions & Future Work

- Simple and effective real-time DNS exfiltration detection method
- Designed to be deployed on DNS resolver for real-time detection
- DNS exfiltration detection capabilities outperform SOTA
- Future work:
 - Currently being deployed on Akamai's DNS resolvers
 - Longitudinal analysis over a year

Questions?

yarinoz@post.bgu.ac.il

