

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph Neural Networks

Bang Wu^{1,2}, **He Zhang**², Xiangwen Yang², Shuo Wang^{1,3}, Minhui Xue¹, Shirui Pan⁴ and Xingliang Yuan²

¹CSIRO's Data61, ²Monash University, ³Shanghai Jiao Tong University, ⁴Griffith University

Outline

• Background

- GNNs in MLaaS
- Graph data misuse
- Our Contribution
- Methodology GraphGuard
 - Detection
 - Mitigation
- Evaluations

GNNs in Critical Applications

[ZYYW+23] Zhang et al., "Emerging drug interaction prediction enabled by a flow-based graph neural network with biomedical network". Nature Computational Science 2023.

[DLSD+20] Dou et al. "Enhancing graph neural network-based fraud detectors against camouflaged fraudsters". In CIKM 2020.

[MGYJ+21] Mirhoseini et al., "A graph placement methodology for fast chip design". Nature 2021.

Images Source (from left to right):

Abate et al., "Graph neural networks for conditional de novo drug design". Wiley Interdisciplinary Reviews: Computational Molecular Science 2023.

https://aws.amazon.com/cn/blogs/machine-learning/build-a-gnn-based-real-time-fraud-detection-solution-using-amazon-sagemaker-amazon-neptune-and-the-deep-graph-library/

Li et al., "A customized graph neural network model for guiding analog IC placement". In ICCAD 2020.

GNNs in Machine Learning as a Service (MLaaS)

GNN is increasingly featured on MLaaS platforms:

- Amazon: SageMaker Support for DGL
- Google: Neo4j & Google Cloud Vertex Al
- Microsoft: Azure ML Spektral

AWS Machine Learning Blog

Build a GNN-based real-time fraud detection solution using Amazon SageMaker, Amazon Neptune, and the Deep Graph Library

by Jian Zhang, Haozhu Wang, and Mengxin Zhu | on 11 AUG 2022 | in Amazon Neptune, Amazon SageMaker, Artificial Intelligence | Permalink | 🗩 Comments | Intelligence | Permalink | Permali

Fraudulent activities severely impact many industries, such as e-commerce, social media, and financial services. Frauds could cause a significant loss for businesses and consumers. <u>American consumers reported losing more than \$5.8 billion</u> to frauds in 2021, up more than 70% over 2020. Many techniques have been used to detect fraudsters—rule-based filters, anomaly detection, and machine learning (ML) models, to name a few.

\equiv amazon science
MACHINE LEARNING
How AWS uses graph neural networks to meet customer needs
Data Science Graph Neural Network on AWS I The Complete Guide Jagreet Kaur 127 June 2023 Use graphs for smarter Al with Neo4j and Google Cloud Vertex Al
January 13, 202

Ben Lackey Director, Global Cloud Channel Architecture at Neo-

Data Misuse for GNNs in MLaaS

GNN deployment via MLaaS raises data misuse problem How does misuse data occur in MLaaS?

GNN development via MLaaS

- 1. Gather data for GNN training
- 2. Deploy GNNs via MLaaS
- 3. Sell API to GNN users

Data Misuse in GNNs

GNN deployment via MLaaS raises data misuse problem Graph can be illegally/wrongfully collected for GNN training!

How to deal with data misuse?

- Detection--Membership Inference
 - Identify if specific graph have been used without authorisation
 - Stealing Links [HJBG+]
 - Node-Level Membership Inference [HWWB+21]
 - Graph-level Membership Inference [WYPY21]
- Mitigation--Machine Unlearning
 - Make GNN model forget about specific misused graph data
 - GraphEraser [CZWB+22]
 - GNNDelete [CDHA+23]

[HJBG+21] [HWWB+21] He, Xinlei, et al. "Node-level membership inference attacks against graph neural networks." *arXiv* 2021.
[WYPY21] Wu, Bang, et al. "Adapting membership inference attacks to GNN for graph classification: Approaches and implications." *ICDM* 2021.
[CZWB+22] Chen, Min, et al. "Graph unlearning." *CCS* 2022.
[CDHA+23] Cheng, Jiali, et al. "GNNDelete: A General Strategy for Unlearning in Graph Neural Networks." *ICLR* 2023.

Requirements of Mitigating Data Misuse in MLaaS

• Task Requirements

<u>**R1</u>** - Misuse Detection - Detect the data misused GNNs</u>

<u>R2</u> - Misuse Mitigation - Remove the misused data's impact

• (MLaaS) Setting Requirements

<u>R3</u> - Data Privatisation - Keep sensitive data locally

<u>R4</u> - GNN Model Agnostic - No assumption on GNN training/model architecture

Our Design -- GraphGuard

- Identify if G_p is used in f_{θ*} training (**R1**)
 Membership inference
- Eliminate the impact of G_p on f_{θ^*} (R2)

• Unlearning

- Do not leverage the graph structure (R3)
- Utilise only standard APIs in MLaaS (R4)

Prior Work

Existing works are less compatible for MLaaS:

- Assume server to access exact training samples
- Require additional functions in GNN architecture or training process

Querying the exact training graph to server.

Prior Work

Existing works are less compatible for MLaaS:

- Assume server to access exact training samples
- Require additional functions in GNN architecture or training process

• Detection goal

Detect data misuse (**R1**) via API (**R4**) without the graph structure (**R3**)

- How to perform membership inference without the graph structure?
 - Prior study: proactive MIA. [SDSJ20]
 - Our design: radioactive graph

GNNs trained on them react differently for specific node attribute queries

Pipeline:

1. Revise node attributes from G_b to G_p before publishing graph

Pipeline:

- 1. Revise node attributes from G_b to G_p before publishing graph
- 2. Data misuse during training
- 3. GNN being deployed

Pipeline:

- 1. Revise node attributes from G_b to G_p before publishing graph
- 2. Data misuse during training
- 3. GNN being deployed
- 4. Query graph \hat{G}_p with node attributes only (without structure)
- 5. Obtain predictions $f_{\theta^*}(\hat{G}_p)$

Pipeline:

- 1. Revise node attributes from G_b to G_p before publishing graph
- 2. Data misuse during training
- 3. GNN being deployed
- 4. Query graph \hat{G}_p with node attributes only (without structure)
- 5. Obtain predictions $f_{\theta^*}(\hat{G}_p)$
- 6. Membership inference $\hat{\mathcal{A}}$ (difference in output distributions)

GraphGuard

• Mitigation goal

Perform unlearning (R2) by fine-tuning the target GNNs (R4) without utilising the exact graph structure (R3)

• Mitigation goal

Perform unlearning (**R2**) by fine-tuning the target GNNs (**R4**) without utilising the exact graph structure (**R3**)

• Design intuitions

- Well-generalised GNNs do not learn the exact graph structure
- Unlearning a subgraph does not rely on the exact sub-graph structure

• Mitigation goal

Perform unlearning (**R2**) by fine-tuning the target GNNs (**R4**) without utilising the exact graph structure (**R3**)

• Design intuitions

- Well-generalised GNNs do not learn the exact graph structure
- Unlearning a subgraph does not rely on the exact sub-graph structure

• Our design

- Leverage MIA for graph synthesis
- Use synthetic graph for unlearning

6. MLaaS receives an unlearning request

- 6. MLaaS receives an unlearning request
- 7. (1) Data Gathering
 - X_p , $\hat{\mathcal{A}}$ from the data owner X_m^0 from the model owner
- 7. (2) Graph Synthesise

Unlearning graph \tilde{G}_p by X_p , f_{θ^*} and \hat{A} Remaining graph \tilde{G}_r by X_m^0 , f_{θ^*} and \hat{A}

- 6. MLaaS receives an unlearning request
- 7. (1) Data Gathering
 - X_p , $\hat{\mathcal{A}}$ from the data owner X_m^0 from the model owner
- 7. (2) Graph Synthesise

Unlearning graph \tilde{G}_p by X_p , f_{θ^*} and \hat{A} Remaining graph \tilde{G}_r by X_m^0 , f_{θ^*} and \hat{A}

8. Fine-tuning f_{θ^*} : Increase loss on \tilde{G}_p Decrease loss on \tilde{G}_r

Evaluations - Detection

		GCN		GraphSage		GAT			GIN			
	Baseline	Ours	Δ	Baseline	Ours	Δ	Baseline	Ours	Δ	Baseline	Ours	Δ
Cora	0.874	0.999	↑0.125	0.864	0.999	↑0.135	0.927	1.0	↑0.073	0.857	1.0	↑0.143
Citeseer	0.711	0.999	↑0.288	0.822	1.0	↑0.178	0.723	0.999	↑0.276	0.767	1.0	↑0.233
Pubmed	0.906	1.0	↑0.094	0.902	1.0	↑0.098	1.0	1.0	0	0.932	1.0	↑0.068
Flickr	1.0	1.0	0	0.994	1.0	↑0.006	0.996	1.0	↑0.004	0.998	1.0	↑0.002
				Metric	: - AUC							

Observations

- Our design achieves higher detection rates
- Baseline MIA only satisfied R1-Detectable & R4-Model Agnostic

Evaluations - Mitigation

• Effectiveness - MIA ASR before/after unlearning

	GCN		(GraphSag	e		GAT			GIN	
Before	After	Δ	Before	After	Δ	Before	After	Δ	Before	After	Δ
86.9	51.8	↓ 35.1	83.3	54.5	↓ 28.8	85.6	47.5	↓ 38.1	91.7	47.9	↓ 43.8
91.3	68.7	↓ 22.6	81.2	56.1	↓ 25.1	61.4	60.3	↓ 1.10	86.2	46.2	↓ 40.0
93.6	49.2	↓ 44.4	85.7	53.2	↓ 32.5	82.4	49.7	↓ 32.7	84.1	47.6	↓ 36.5
	Before 86.9 91.3 93.6	GCNBeforeAfter86.951.891.368.793.649.2	GCNBeforeAfter Δ 86.951.8 \downarrow 35.191.368.7 \downarrow 22.693.649.2 \downarrow 44.4	GCNGCNBeforeAfter Δ Before86.951.8 \downarrow 35.1 83.391.368.7 \downarrow 22.6 81.293.649.2 \downarrow 44.4 85.7	GCNGraphSageBeforeAfter Δ BeforeAfter86.951.8 \downarrow 35.1 83.354.591.368.7 \downarrow 22.6 81.256.193.649.2 \downarrow 44.4 85.753.2	GCNGraphSageBeforeAfter Δ BeforeAfter Δ 86.951.8 \downarrow 35.1 83.354.5 \downarrow 28.8 91.368.7 \downarrow 22.6 81.256.1 \downarrow 25.1 93.649.2 \downarrow 44.4 85.753.2 \downarrow 32.5	GCNGraphSageBeforeAfter Δ BeforeAfter Δ Before86.951.8 \downarrow 35.1 83.354.5 \downarrow 28.8 85.691.368.7 \downarrow 22.6 81.256.1 \downarrow 25.1 61.493.649.2 \downarrow 44.4 85.753.2 \downarrow 32.5 82.4	GCNGraphSageGATBeforeAfter Δ BeforeAfter Δ BeforeAfter86.951.8 \downarrow 35.1 83.354.5 \downarrow 28.8 85.647.591.368.7 \downarrow 22.6 81.256.1 \downarrow 25.1 61.460.393.649.2 \downarrow 44.4 85.753.2 \downarrow 32.5 82.449.7	GCN GraphSage GAT Before After Δ Before After Δ 86.9 51.8 \downarrow 35.1 83.3 54.5 \downarrow 28.8 85.6 47.5 \downarrow 38.1 91.3 68.7 \downarrow 22.6 81.2 56.1 \downarrow 25.1 61.4 60.3 \downarrow 1.10 93.6 49.2 \downarrow 44.4 85.7 53.2 \downarrow 32.5 82.4 49.7 \downarrow 32.7	GCNGraphSageGATBeforeAfter Δ BeforeAfter Δ Before86.951.8 \downarrow 35.183.354.5 \downarrow 28.885.647.5 \downarrow 38.191.791.368.7 \downarrow 22.681.256.1 \downarrow 25.161.460.3 \downarrow 1.1086.293.649.2 \downarrow 44.485.753.2 \downarrow 32.582.449.7 \downarrow 32.784.1	GCNGraphSageGATGINBeforeAfter Δ BeforeAfter Δ BeforeAfter86.951.8 \downarrow 35.183.354.5 \downarrow 28.885.647.5 \downarrow 38.191.747.991.368.7 \downarrow 22.681.256.1 \downarrow 25.161.460.3 \downarrow 1.1086.246.293.649.2 \downarrow 44.485.753.2 \downarrow 32.582.449.7 \downarrow 32.784.147.6

• Utility - Model ACC before/after unlearning

	GCN GraphSage						GAT			GIN		
	R	U	Δ	R	\overline{U}	Δ	R	U	Δ	R	U	Δ
Cora 7.	75.7	74.3	↓ 1.2	67.4	66.5	↓ 0.9	83.1	81.5	↓ 1.6	86.4	85.1	↓ 1.3
Citeseer 8	81.1	80.0	↓ 1.1	70.0	68.7	↓ 1.3	82.2	80.1	↓ 2.1	79.5	78.9	↓ 0.6
Pubmed 8	81.8	79.8	↓ 2.0	82.5	80.3	↓ 2.2	83.6	81.3	↓ 2.3	83.6	82.8	↓ 0.8

Evaluations - Mitigation

• Efficiency - Time cost of retraining/our unlearning

		GCN			GraphSage	
	R	Ours	Times(↑)	R	Ours	Times(↑)
Cora	3.615	0.725	≈ 4.99	4.188	0.643	≈6.51
Citeseer	1.746	0.375	≈ 4.66	2.023	0.333	\approx 6.08
Pubmed	4.201	3.043	\approx 1.38	4.865	2.670	≈ 1.82

		GAT			GIN	
	R	Ours	Times(↑)	R	Ours	Times(↑)
Cora	3.600	0.720	≈ 5.0	4.26	1.225	≈ 3.48
Citeseer	1.737	0.375	≈ 4.63	2.058	0.613	pprox3.56
Pubmed	4.190	3.017	≈ 1.39	4.968	5.124	≈ 0.97

Conclusion

- Definition of New Problem
 - We define the graph misuse in MLaaS-deployed GNNs
- Requirement formulation
 - Task Requirements: (R1) detectable, (R2) remedial
 - (MLaaS) Setting Requirements: (R3) data privatisation, (R4) model agnostic
- An Integrated Pipeline
 - Radioactive data driven detection technique
 - Unlearning methodology w/o confidential graph structure

Q&A

- Code: https://github.com/GraphGuard/GraphGuard-Proactive.
- Email: <u>bang.wu@data61.csiro.au</u>, <u>he.zhang1@monash.edu</u>.

Code

Paper