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Outline

● Traditional Architectural Aspects for FI on SoCs   :  Processor and Memory

● An alternative Architectural Aspect for FI on SoCs : System Bus

● End-to-End attack on Open Portable Trusted Execution Environment
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Are there other architectural aspects which can be used for 
faults, for which no known defences are deployed yet?
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Alternative Architectural Aspect for FI on SoCs : System Bus

● Uncased and exposed

Fig: Exposed bus connections in RPi3

● Involved mainly with 
load/store instructions

● Prior works
   (1) simulation of bus faults
   (2) external voltage glitches on 
        PlayStation consoles to skip 
        memory cycles



Bus Faults : Attack Principle

Fig: Electromagnetic Fault Injection probe positioned over the 
exposed system bus on a RPi3
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Bus Faults : Differential Fault Attack on AES

● Table based implementation (AESNI absent on SoCs)

● Fault injection in Round 8

● Key entropy reduction to 28 [1]

1. Tunstall, M., Mukhopadhyay, D., & Ali, S. (2011). Differential fault analysis of the advanced encryption standard using a single fault.



Bus Faults : Comparison with FI on Memory

● Probe position does not influence memory chip

● load instruction fetches correct data once probe is removed  
(transient fault)



Bus Faults : Comparison with FI on Processor

● Probe position does not influence process

● No depackaging performed on target systems

● [Empirical Observation] DFA on AES not reproducible with 
probe position over the packaged processor
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    Register sweeping
  (clean the value of a load)



Register sweeping to mount an end-to-end attack on Open Portable 
Trusted Execution Environment (OP-TEE)



Attack on TEE : Architecture
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Attack on TEE : Attack Point

Not Available Protected TA
memory

Not Available Signing key 
not stored
 on device



Attack on TEE : Attack Point

Register sweeping : Fault a load to 
0x0 through bus faults



Attack on TEE : Combined Adversary

Power-side channel to inform
fault injection in a non-invasive way
(no recompilation of OP-TEE kernel necessary)

Actual fault injection on signature 
verification



Attack on TEE : Fallout

Register sweeping fault attack loads a self-signed, adversarial 
controlled Trusted Application in the secure world of OP-TEE
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Attack on TEE : Increasing Capability of self-signed TA

Redirect (encrypted) communication meant for other benign TAs

Our Finding: GlobalPlatform API specification (upon which OP-TEE is constructed) offloads the 
responsibility of choosing UUID to Original Equipment Manufacturer. It is the responsibility of the 
OEM to ensure no two Trusted Applications (TA) share same UUID.

UUID confusion: Behaviour of the system when UUID are non-unique is undefined. Our 
empirical conclusion is that, when UUIDs are shared, a non-persistent TA is preferred over 
persistent TA.



Attack on TEE : Increasing Capability of self-signed TA

Redirect (encrypted) communication meant for other benign TAs

Insecure World Secure World Universally Unique 
IDentifier (UUID) 

comparison
(with self-signed TA loaded after 

register sweeping attack)

Secure Trusted 
Application execution

(persistent TA)

Self-signed Trusted Application execution
(non-persistent TA with UUID confusion)
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Attack on TEE : Increasing Capability of self-signed TA

Decrypt the (encrypted) redirected communication

Third Party Extension: SeCReT

● Symmetric key management

● Blocks SIGTRAP

● Blocks unauthorized read to 
sensitive data pages

● Does not block SIGSEGV. Leaks 
key through coredump



Attack on TEE : End-to-End Attack on an example TA (MLaaS)



Attack on TEE : Impact

● CVE 2022-47549

● Worked together with Linaro to deploy countermeasure in OP-TEE kernel
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(Some) Research Directions 

● Power/EM Side-channel evaluation 
of FPGAs/micro-controllers/SoCs

● Fault Attacks, Fault Analysis, and 
design of countermeasures

● Evaluation of Micro-architectural 
attack scenarios on workstations as 
well as embedded systems

● Others directions…
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Fig: Fault Attack testbed used for this work



Thank You!


