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• Requirements
1) Data privacy – Fundamentally, raw data of DOes should not be leaked.
2) Model privacy – Since MO may wish to finetune an existing model, the model parameters 
should not be leaked to other participants. Furthermore, the model should be able to be 
deployed independently by MO after training. 
3) Extensibility – The framework should scale to more DOes without significant increased cost
4) Against collusion – Colluding parties should not have advantage to break privacy of other 
honest parties
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Cons
• The model privacy isn’t 

protected at all!
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Problems of prior works

•Secure Multiparty Computation (MPC)
• MO and DOes participate in n-party computation as servers. 

Pros
• Model (and data) privacy 

guaranteed.
Cons
• Not extensible: introducing 

new DOes requires new 
protocol design.

• Not secure against collusion
• Huge communication 

overhead.
Participants’ roles are symmetric in MPC.
All model and data are secret-shared.
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Problems of prior works

•Pure Homomorphic Encryption (HE) Approaches
• DO uploads encrypted data for training; MO obtains an encrypted model.

Pros
• Low communication overhead.
Cons
• Not extensible: only one DO! 
• Heavy computation

The encrypted model could only be 
used by the DO assisting training. 
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Our solution

•2-party training: HE + MPC
• Data and model privacy guaranteed.
• Model updates are given only to MO.

• i.e. the model is not shared nor encrypted w.r.t specific 
DO(es)

•Extensibility and collusion defence
• MO trains with a different DO in each step.
• Since no privacy leaks in 2-party, collusion 

could not break the privacy of any party.
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• In BP, similarly ⟨∇𝑋𝑋𝑖𝑖⟩ is shared;

• … but the weight gradients are given to the MO.
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•Forward propagation
• 2-round protocol with HE
• As a general solution, this 

algorithm does not specify
how 𝐖𝐖 ∘ 𝐗𝐗 is evaluated.

• Our implementation uses 
batched polynomial 
encoding, but other methods 
(e.g. Gazelle’s encoding) 
could be used.
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• Gradient of W, given to MO
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•Build with Two-party MPC
•Example: ReLU 𝑥𝑥 = DReLU 𝑥𝑥 ⋅ 𝑥𝑥

• DReLU => secure comparison protocol
• Boolean-arithmetic multiplication => OT-based multiplexing
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•Substantial part of computation lies in HE linear operation evaluation
•𝑊𝑊 ∘ 𝑋𝑋 in FP, results shared
•𝑊𝑊⊙𝑥𝑥 ∇𝑌𝑌 in BP, results shared
• ∇𝑌𝑌 0 ⊙ 𝑋𝑋 1 + ∇𝑌𝑌 1 ⊙ 𝑋𝑋 0 in BP, results shared

•Generalization: Is there a way to accelerate online evaluation of 
general operator 𝑢𝑢 ∘ 𝑣𝑣, each party holding one operand?

•First, let’s consider a fixed 𝑢𝑢 and variable 𝑣𝑣’s.
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•Preprocessed shares cannot be 
reused, or info is leaked.

• If, for 𝑣𝑣0 and 𝑣𝑣1, the same sharing of 
𝑤𝑤 = 𝑢𝑢′ ∘ 𝑣𝑣𝑣 was used, Bob would send 
𝑣𝑣′ − 𝑣𝑣0 and 𝑣𝑣′ − 𝑣𝑣1 to Alice, so Alice 
would obtain the difference 𝑣𝑣0 − 𝑣𝑣1 (a 
direct linear combination of 2 input 
values)

•Total communication is not reduced, 
while total computation is even 
increased.
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Novel approach: Multiple masks

•Solution: use multiple masks 
to increase the revealed 
linear combination 
complexity.

• Bob samples 𝑚𝑚 random 𝑣𝑣𝑖𝑖′’s 
to conduct preprocessing.

• Reuse the shares ⟨𝑤𝑤𝑖𝑖⟩ for 
multiple online executions
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Multiple masks

•Extending to variable 𝑢𝑢’s
• Similarly, Alice samples multiple masks 𝑢𝑢𝑖𝑖′

• If the online phase is executed 𝑇𝑇 times:
• Traditional: 𝑇𝑇 times HE/MPC evaluation of ∘
• Ours: 𝑚𝑚2 times of HE/MPC evaluation, 

regardless of 𝑇𝑇
•Security analysis shows

• To eliminate masks, an attacker would 
require at least 𝑚𝑚 + 1 equations

• Complexity of breaking one 𝑢𝑢 or 𝑣𝑣 is 
𝑂𝑂(2𝜕𝜕𝑓𝑓), 𝑓𝑓 being the fixed-point precision
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Evaluation:  Training costs

Since the preprocessing technique introduces different security properties, we 
denote Pencil with or without it as Pencil and Pencil+ respectively. 

With Pencil+ and transfer learning, a model for CIFAR10 classification could be 
trained within 6.5 hours (10 epochs)



Evaluation:  Training costs

• Comparison with previous 2PC works 
shows improvements of up to 2 
orders of magnitude.



Evaluation:  Training costs

• Comparison with previous 2PC works 
shows improvements of up to 2 
orders of magnitude.

• Unlike previous general n-PC 
frameworks, extending to multiple 
DOes does not introduce extra 
overhead for Pencil.



Thank you for listening!
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