
#NDSSSymposium2024

Presented by

Pencil: Private and Extensible Collaborative
Machine Learning
without the Non-Colluding Assumption

Xuanqi Liu, Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu

Tsinghua University

Overview

•Key problem: Machine learning when model and data are separated

Overview

•Key problem: Machine learning when model and data are separated
• A Model Owner (MO) wishes to use the data of multiple Data Owners

(DOes) to train a model.

Overview

• Requirements
1) Data privacy – Fundamentally, raw data of DOes should not be leaked.

Overview

• Requirements
1) Data privacy – Fundamentally, raw data of DOes should not be leaked.
2) Model privacy – Since MO may wish to finetune an existing model, the model parameters
should not be leaked to other participants. Furthermore, the model should be able to be
deployed independently by MO after training.

Overview

• Requirements
1) Data privacy – Fundamentally, raw data of DOes should not be leaked.
2) Model privacy – Since MO may wish to finetune an existing model, the model parameters
should not be leaked to other participants. Furthermore, the model should be able to be
deployed independently by MO after training.
3) Extensibility – The framework should scale to more DOes without significant increased cost

Overview

• Requirements
1) Data privacy – Fundamentally, raw data of DOes should not be leaked.
2) Model privacy – Since MO may wish to finetune an existing model, the model parameters
should not be leaked to other participants. Furthermore, the model should be able to be
deployed independently by MO after training.
3) Extensibility – The framework should scale to more DOes without significant increased cost
4) Against collusion – Colluding parties should not have advantage to break privacy of other
honest parties

Problems of prior works

•Federated Learning
• In every iteration, Server (MO) distributes the model to Clients (DOes).
• Clients train with local data and upload the updates for aggregation.

Problems of prior works

•Federated Learning
• In every iteration, Server (MO) distributes the model to Clients (DOes).
• Clients train with local data and upload the updates for aggregation.

Pros
• Raw data never leave the

client;
• Extensible (arbitrary

joining and leaving)

Problems of prior works

•Federated Learning
• In every iteration, Server (MO) distributes the model to Clients (DOes).
• Clients train with local data and upload the updates for aggregation.

Pros
• Raw data never leave the

client;
• Extensible (arbitrary

joining and leaving)
Cons
• The model privacy isn’t

protected at all!

Problems of prior works

•Secure Multiparty Computation (MPC)
• MO and DOes participate in n-party computation as servers.

Participants’ roles are symmetric in MPC.
All model and data are secret-shared.

Problems of prior works

•Secure Multiparty Computation (MPC)
• MO and DOes participate in n-party computation as servers.

Pros
• Model (and data) privacy

guaranteed.

Participants’ roles are symmetric in MPC.
All model and data are secret-shared.

Problems of prior works

•Secure Multiparty Computation (MPC)
• MO and DOes participate in n-party computation as servers.

Pros
• Model (and data) privacy

guaranteed.
Cons
• Not extensible: introducing

new DOes requires new
protocol design.

Participants’ roles are symmetric in MPC.
All model and data are secret-shared.

Problems of prior works

•Secure Multiparty Computation (MPC)
• MO and DOes participate in n-party computation as servers.

Pros
• Model (and data) privacy

guaranteed.
Cons
• Not extensible: introducing

new DOes requires new
protocol design.

• Not secure against collusion
• Huge communication

overhead.
Participants’ roles are symmetric in MPC.
All model and data are secret-shared.

Problems of prior works

•Pure Homomorphic Encryption (HE) Approaches
• DO uploads encrypted data for training; MO obtains an encrypted model.

Problems of prior works

•Pure Homomorphic Encryption (HE) Approaches
• DO uploads encrypted data for training; MO obtains an encrypted model.

The encrypted model could only be
used by the DO assisting training.

Problems of prior works

•Pure Homomorphic Encryption (HE) Approaches
• DO uploads encrypted data for training; MO obtains an encrypted model.

Pros
• Low communication overhead.

The encrypted model could only be
used by the DO assisting training.

Problems of prior works

•Pure Homomorphic Encryption (HE) Approaches
• DO uploads encrypted data for training; MO obtains an encrypted model.

Pros
• Low communication overhead.
Cons
• Not extensible: only one DO!
• Heavy computation

The encrypted model could only be
used by the DO assisting training.

Our solution

•2-party training: HE + MPC
• Data and model privacy guaranteed.

Our solution

•2-party training: HE + MPC
• Data and model privacy guaranteed.
• Model updates are given only to MO.

Our solution

•2-party training: HE + MPC
• Data and model privacy guaranteed.
• Model updates are given only to MO.

• i.e. the model is not shared nor encrypted w.r.t specific
DO(es)

Our solution

•2-party training: HE + MPC
• Data and model privacy guaranteed.
• Model updates are given only to MO.

• i.e. the model is not shared nor encrypted w.r.t specific
DO(es)

•Extensibility and collusion defence
• MO trains with a different DO in each step.

Our solution

•2-party training: HE + MPC
• Data and model privacy guaranteed.
• Model updates are given only to MO.

• i.e. the model is not shared nor encrypted w.r.t specific
DO(es)

•Extensibility and collusion defence
• MO trains with a different DO in each step.
• Since no privacy leaks in 2-party, collusion

could not break the privacy of any party.

Pencil training overview

•Secret shares throughout FP and BP

Pencil training overview

•Secret shares throughout FP and BP
• 𝑙𝑙-layer sequential model
• 𝑋𝑋𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋𝑖𝑖−1

Pencil training overview

•Secret shares throughout FP and BP
• 𝑙𝑙-layer sequential model
• 𝑋𝑋𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋𝑖𝑖−1
• In FP, the two parties keep ⟨𝑋𝑋𝑖𝑖⟩ in secret shares

Pencil training overview

•Secret shares throughout FP and BP
• 𝑙𝑙-layer sequential model
• 𝑋𝑋𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋𝑖𝑖−1
• In FP, the two parties keep ⟨𝑋𝑋𝑖𝑖⟩ in secret shares

• In BP, similarly ⟨∇𝑋𝑋𝑖𝑖⟩ is shared;

Pencil training overview

•Secret shares throughout FP and BP
• 𝑙𝑙-layer sequential model
• 𝑋𝑋𝑖𝑖 = 𝑓𝑓𝑖𝑖 𝑋𝑋𝑖𝑖−1
• In FP, the two parties keep ⟨𝑋𝑋𝑖𝑖⟩ in secret shares

• In BP, similarly ⟨∇𝑋𝑋𝑖𝑖⟩ is shared;

• … but the weight gradients are given to the MO.

Training: Linear layers = HE

•Forward propagation
• 2-round protocol with HE

Training: Linear layers = HE

•Forward propagation
• 2-round protocol with HE
• As a general solution, this

algorithm does not specify
how 𝐖𝐖 ∘ 𝐗𝐗 is evaluated.

• Our implementation uses
batched polynomial
encoding, but other methods
(e.g. Gazelle’s encoding)
could be used.

Training: Linear layers = HE

•Backpropagation
• Gradient of x, shared: ∇𝑥𝑥= 𝑊𝑊⊙𝑊𝑊 ∇y

• E.g. For FC, 𝑌𝑌 = 𝑊𝑊⟨𝑋𝑋⟩, ⟨∇𝑋𝑋⟩ = ⟨∇𝑌𝑌⟩ ⋅ 𝑊𝑊𝑇𝑇

Training: Linear layers = HE

•Backpropagation
• Gradient of x, shared: ∇𝑥𝑥= 𝑊𝑊⊙𝑊𝑊 ∇y

• E.g. For FC, 𝑌𝑌 = 𝑊𝑊⟨𝑋𝑋⟩, ⟨∇𝑋𝑋⟩ = ⟨∇𝑌𝑌⟩ ⋅ 𝑊𝑊𝑇𝑇

• Gradient of b, given to MO: ∇𝑏𝑏= ∇𝑦𝑦 ⊙𝑏𝑏
𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏

.
• For FC and Conv, simply sum up ∇𝑦𝑦 and reveal to MO.

Training: Linear layers = HE

•Backpropagation
• Gradient of x, shared: ∇𝑥𝑥= 𝑊𝑊⊙𝑊𝑊 ∇y

• E.g. For FC, 𝑌𝑌 = 𝑊𝑊⟨𝑋𝑋⟩, ⟨∇𝑋𝑋⟩ = ⟨∇𝑌𝑌⟩ ⋅ 𝑊𝑊𝑇𝑇

• Gradient of b, given to MO: ∇𝑏𝑏= ∇𝑦𝑦 ⊙𝑏𝑏
𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏

.
• For FC and Conv, simply sum up ∇𝑦𝑦 and reveal to MO.

• Gradient of W, given to MO

Training: Linear layers = HE

•For gradient of W, it is the product
of two secret-shared values

Training: Linear layers = HE

•For gradient of W, it is the product
of two secret-shared values

•Solution: HE for cross terms
(no need for cipher-cipher
multiplication)

Training: Linear layers = HE

•For gradient of W, it is the product
of two secret-shared values

•Solution: HE for cross terms
(no need for cipher-cipher
multiplication)

Training: Non-linear layers = MPC

•Build with Two-party MPC

Training: Non-linear layers = MPC

•Build with Two-party MPC
•Example: ReLU 𝑥𝑥 = DReLU 𝑥𝑥 ⋅ 𝑥𝑥

Training: Non-linear layers = MPC

•Build with Two-party MPC
•Example: ReLU 𝑥𝑥 = DReLU 𝑥𝑥 ⋅ 𝑥𝑥

• DReLU => secure comparison protocol
• Boolean-arithmetic multiplication => OT-based multiplexing

Optimzing

•Substantial part of computation lies in HE linear operation evaluation

Optimzing

•Substantial part of computation lies in HE linear operation evaluation
•𝑊𝑊 ∘ 𝑋𝑋 in FP, results shared
•𝑊𝑊⊙𝑥𝑥 ∇𝑌𝑌 in BP, results shared
• ∇𝑌𝑌 0 ⊙ 𝑋𝑋 1 + ∇𝑌𝑌 1 ⊙ 𝑋𝑋 0 in BP, results shared

Optimzing

•Substantial part of computation lies in HE linear operation evaluation
•𝑊𝑊 ∘ 𝑋𝑋 in FP, results shared
•𝑊𝑊⊙𝑥𝑥 ∇𝑌𝑌 in BP, results shared
• ∇𝑌𝑌 0 ⊙ 𝑋𝑋 1 + ∇𝑌𝑌 1 ⊙ 𝑋𝑋 0 in BP, results shared

•Generalization: Is there a way to accelerate online evaluation of
general operator 𝑢𝑢 ∘ 𝑣𝑣, each party holding one operand?

Optimzing

•Substantial part of computation lies in HE linear operation evaluation
•𝑊𝑊 ∘ 𝑋𝑋 in FP, results shared
•𝑊𝑊⊙𝑥𝑥 ∇𝑌𝑌 in BP, results shared
• ∇𝑌𝑌 0 ⊙ 𝑋𝑋 1 + ∇𝑌𝑌 1 ⊙ 𝑋𝑋 0 in BP, results shared

•Generalization: Is there a way to accelerate online evaluation of
general operator 𝑢𝑢 ∘ 𝑣𝑣, each party holding one operand?

•First, let’s consider a fixed 𝑢𝑢 and variable 𝑣𝑣’s.

Traditional preprocessing: Beaver triples

Traditional preprocessing: Beaver triples

•Preprocessed shares cannot be
reused, or info is leaked.

Traditional preprocessing: Beaver triples

•Preprocessed shares cannot be
reused, or info is leaked.

• If, for 𝑣𝑣0 and 𝑣𝑣1, the same sharing of
𝑤𝑤 = 𝑢𝑢′ ∘ 𝑣𝑣𝑣 was used, Bob would send
𝑣𝑣′ − 𝑣𝑣0 and 𝑣𝑣′ − 𝑣𝑣1 to Alice, so Alice
would obtain the difference 𝑣𝑣0 − 𝑣𝑣1 (a
direct linear combination of 2 input
values)

Traditional preprocessing: Beaver triples

•Preprocessed shares cannot be
reused, or info is leaked.

• If, for 𝑣𝑣0 and 𝑣𝑣1, the same sharing of
𝑤𝑤 = 𝑢𝑢′ ∘ 𝑣𝑣𝑣 was used, Bob would send
𝑣𝑣′ − 𝑣𝑣0 and 𝑣𝑣′ − 𝑣𝑣1 to Alice, so Alice
would obtain the difference 𝑣𝑣0 − 𝑣𝑣1 (a
direct linear combination of 2 input
values)

•Total communication is not reduced,
while total computation is even
increased.

Novel approach: Multiple masks

•Solution: use multiple masks
to increase the revealed
linear combination
complexity.

Novel approach: Multiple masks

•Solution: use multiple masks
to increase the revealed
linear combination
complexity.

• Bob samples 𝑚𝑚 random 𝑣𝑣𝑖𝑖′’s
to conduct preprocessing.

Novel approach: Multiple masks

•Solution: use multiple masks
to increase the revealed
linear combination
complexity.

• Bob samples 𝑚𝑚 random 𝑣𝑣𝑖𝑖′’s
to conduct preprocessing.

• Reuse the shares ⟨𝑤𝑤𝑖𝑖⟩ for
multiple online executions

Multiple masks

•Extending to variable 𝑢𝑢’s
• Similarly, Alice samples multiple masks 𝑢𝑢𝑖𝑖′

Multiple masks

•Extending to variable 𝑢𝑢’s
• Similarly, Alice samples multiple masks 𝑢𝑢𝑖𝑖′

Multiple masks

•Extending to variable 𝑢𝑢’s
• Similarly, Alice samples multiple masks 𝑢𝑢𝑖𝑖′

• If the online phase is executed 𝑇𝑇 times:
• Traditional: 𝑇𝑇 times HE/MPC evaluation of ∘
• Ours: 𝑚𝑚2 times of HE/MPC evaluation,

regardless of 𝑇𝑇

Multiple masks

•Extending to variable 𝑢𝑢’s
• Similarly, Alice samples multiple masks 𝑢𝑢𝑖𝑖′

• If the online phase is executed 𝑇𝑇 times:
• Traditional: 𝑇𝑇 times HE/MPC evaluation of ∘
• Ours: 𝑚𝑚2 times of HE/MPC evaluation,

regardless of 𝑇𝑇
•Security analysis shows

• To eliminate masks, an attacker would
require at least 𝑚𝑚 + 1 equations

• Complexity of breaking one 𝑢𝑢 or 𝑣𝑣 is
𝑂𝑂(2𝜕𝜕𝑓𝑓), 𝑓𝑓 being the fixed-point precision

Evaluation: Training costs

Since the preprocessing technique introduces different security properties, we
denote Pencil with or without it as Pencil and Pencil+ respectively.

Evaluation: Training costs

Since the preprocessing technique introduces different security properties, we
denote Pencil with or without it as Pencil and Pencil+ respectively.

With Pencil+ and transfer learning, a model for CIFAR10 classification could be
trained within 6.5 hours (10 epochs)

Evaluation: Training costs

• Comparison with previous 2PC works
shows improvements of up to 2
orders of magnitude.

Evaluation: Training costs

• Comparison with previous 2PC works
shows improvements of up to 2
orders of magnitude.

• Unlike previous general n-PC
frameworks, extending to multiple
DOes does not introduce extra
overhead for Pencil.

Thank you for listening!

	幻灯片编号 1
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Problems of prior works
	Our solution
	Our solution
	Our solution
	Our solution
	Our solution
	Pencil training overview
	Pencil training overview
	Pencil training overview
	Pencil training overview
	Pencil training overview
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Linear layers = HE
	Training: Non-linear layers = MPC
	Training: Non-linear layers = MPC
	Training: Non-linear layers = MPC
	Optimzing
	Optimzing
	Optimzing
	Optimzing
	Traditional preprocessing: Beaver triples
	Traditional preprocessing: Beaver triples
	Traditional preprocessing: Beaver triples
	Traditional preprocessing: Beaver triples
	Novel approach: Multiple masks
	Novel approach: Multiple masks
	Novel approach: Multiple masks
	Multiple masks
	Multiple masks
	Multiple masks
	Multiple masks
	Evaluation: Training costs
	Evaluation: Training costs
	Evaluation: Training costs
	Evaluation: Training costs
	Thank you for listening!

