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1. Background and Motivation

• Fuzzing 

– Effective approach to discovering vulnerabilities

– e.g., AFL, Google’s OSS Fuzz

• Directed Greybox Fuzzing (DGF)

– Designed technique for testing the given target code locations

– Patch testing, bug reproduction, potential buggy code verification
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1. Background and Motivation

• Directed Greybox Fuzzing (DGF)
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1. Background and Motivation

• However

– Heuristic methods lack foresight on paths that have not been exercised yet

– Hard-to-execute paths with complex constraints would hinder DGF

• For example

– Using BB distance, seeds with shorter distances are prioritized 

– Complex constraints along seeds’ paths will hinder fuzzer from reaching targets

• State-of-the-art DGF techniques

– The state-of-the-art DGF works leverage heuristic methods to optimize fitness metrics or 

exclude the irrelevant code locations. 

•  e.g., BEACON (path pruning), CAFL and WindRanger (data condition)   
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1. Background and Motivation

• Our goal

– Path Transition Model.

• Model DGF as a process of reaching the target 

site through specific path transition sequences. 

– Design a predictive directed greybox fuzzer 

to predict the path transitions.

– Intelligently generate the optimal and 

viable path to the target site.
𝑝𝑎𝑡ℎ1 𝑝𝑎𝑡ℎ2 𝑝𝑎𝑡ℎ3
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1. Background and Motivation

• Challenges

– Challenge 1: How to predict path transitions that have not been taken? 

– Challenge 2: How to determine the optimal path among large numbers of path                   

                         transitions?

– Challenge 3: How to exercise the optimal path transition sequences by 

                         optimizing the fuzzing strategies?
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1. Background and Motivation

• Solutions

– For Challenge 1

• Design the Virtual Ensemble Environment to imitate the path transition model  and   

  predict the path transitions.

– For Challenge 2

• Develop the Reinforcement Learning for Fuzzing model to learn the policy that can 

  maximize sequence rewards.

– For Challenge 3

• Propose the concept of the action group and the MPSO algorithm to guide the fuzzer    

  to exercise the optimal path transition sequences 
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2. Design

2.1 Overview of DeepGo

Path Transition Model
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2. Design

2.1 Overview of DeepGo

Virtual Ensemble Environment
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2. Design

2.1 Overview of DeepGo

Reinforcement Learning for Fuzzing 
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2. Design

2.1 Overview of DeepGo

Fuzzing Optimization Component
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2. Design

2.2 Design of Path transition model

Reward:  effectiveness of path transitions 

Expected sequence reward:  effectiveness of actions

Seed value (Path value)：

     （1）seed distance to targets

     （2）the difficulty of satisfying the branch inversion 

（3）execution speed

     （4）“favored”?
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2. Design

2.2 Design of Path transition model

Reward:

Expected sequence reward:

Transition value:

Path transition:
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2. Design

2.3 Design of Virtual Ensemble Environment

– Purpose: predict the potential path transitions and the corresponding rewards.

– Deep neural networks 

– Experience reply buffer and predicted replay buffer     

Predicted 

Reply Buffer
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2. Design

2.3 Design of Virtual Ensemble Environment

– Purpose: predict the potential path transitions and the corresponding rewards.

– Deep neural networks 

• training:

• Gaussian probability distribution of the next paths and rewards

    

•   Average of the probabilities and rewards of DNNs

 

– Experience reply buffer and predicted replay buffer     

f:(path, action) → (next_path, reward) X Y
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2. Design

2.3 Design of Virtual Ensemble Environment

       – Purpose: predict the potential path transitions and the corresponding rewards.

– Deep neural networks 

– Experience reply buffer and predicted replay buffer     

Predicted 

Reply Buffer
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2. Design

2.4 Reinforcement Learning for Fuzzing Model

– Purpose: learn the policy that can steer the fuzzer toward the high-reward path 

transition sequences

– Actor network, Q-Critic network, V-Critic network

Policy π

𝑸𝝅 𝒔 𝒂

𝑽𝝅(𝐬)
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2. Design

2.4 Reinforcement Learning for Fuzzing Model

       
– To give the RLF model foresight, we combine historical path transitions and predicted path 

transitions to train RLF.

•  Historical path transitions:

    - Fuzzer stay on a path and take actions to cause path transitions

           

    - Historical path transitions are stored in the historical reply buffer and loaded by the   

      RLF model in each fuzzing cycle

actions path

transitions

historical path

transitions

loaded in each 

fuzzing cycle
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2. Design

2.4 Reinforcement Learning for Fuzzing Model

       
– To give the RLF model foresight, we combine historical path transitions and predicted path 

transitions to train RLF.

•  Predicted path transitions:

    - Well-trained VEE imitate path transition model   

    - K-step branch rollout strategy to obtain predicted path transitions .
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2. Design

2.5 Fuzzing Optimization

– Purpose: guide the fuzzer to exercise the optimal path transition sequences.

– Action group

– Multi-elements Particle Swarm Optimization (MPSO) algorithm 

Policy π

𝑸𝝅 𝒔 𝒂

𝑽𝝅(𝐬)

Fuzzing

Strategy
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2. Design

2.5 Fuzzing Optimization

       
Seed-selection (SS):

• Representing the probability of a seed being 
selected to fuzz. 

Seed-energy (SE) :
• Representing the energy assigned to the seed 

Havoc-round (HR) :
• Representing the number of looping rounds 

used to select different mutators and bytes 
during the havoc stage.

Mutator (MT)     :  
• Representing the mutator selected to mutate 

the  seed.

Location (LC)    :  
• Representing the mutation location of the seed 

that is selected to mutate

– Purpose

– Action group

– MPSO algorithm 
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2. Design

2.5 Fuzzing Optimization

       
– Purpose 

– Action group

– Multi-elements Particle Swarm Optimization.

– Update the location to find the local_best and 

global_best locations for each elements

– Optimize fuzzing strategies to realize optimal 

path transition sequences.

Update particles
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3. Evaluations

• Benchmarks

• Baselines

       

–  UniBench and CVE-Benchmark

–  25 programs with a total 100 targets

– WindRanger,  BEACON,  ParmeSan, and  AFLGo

• Evaluation setup

       

–  Repeat 5 times

–  Run for 24 hours
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3. Evaluations

• Time-to-Reach (TTR):

       

– DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON 

(11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget. 

– DeepGo demonstrates 3.23×, 1.72×, 1.81×, and 4.83× speedup compared to AFLGo, 

BEACON, WindRanger, and ParmeSan, respectively
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3. Evaluations

• Time-to-Exposure(TTE):

       

– DeepGo (19) exposed the most compared to 

AFLGo (14), BEACON (13), WindRanger (16), 

and ParmeSan (14).

– DeepGo demonstrated 2.61×, 3.32×, 2.43× and 

2.53× speedup compared to AFLGo, BEACON, 

WindRanger, and ParmeSan, respectively.
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3. Evaluations

• Ablation study:

       

– Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment

• DeepGo-v: remove VEE from DeepGo

• DeepGo-r: remove RLF and FO from DeepGo

– DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and 

DeepGo-r (18/80), respectively

– DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the 

average TTR of reaching the target sites
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3. Evaluations

• Setting of hyperparameters:

       

– Utilize DeepGo with different hyperparameter configurations to test 20 programs from 

UniBench and recorded the mean TTR for each test case

– γ = 0.8 and k = 4 can achieve minimum TTR

– The setting of γ and k has a relatively small impact on TTR if the value of γ is 

between [0.5, 0.9], and the value of k is between [3, 5]
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4. Conclusion

• We propose DeepGo: a predictive directed greybox fuzzer to 

steer DGF to reach targets via optimal paths

– Propose the path transition model.

– Construct a Virtual Ensemble Environment to predict path transitions.

– Develop a Reinforcement Learning for Fuzzing model to learn the policy that 

can steer the fuzzer toward the high-reward path transition sequences.

– Propose the concept of action group and the Multi-elements Particle Swarm  

Optimization algorithm to steer fuzzer to realize the optimal and viable path 

transition sequences.
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Email:

If you have some questions about our work, 
welcome to contact us!

phlin22@nudt.edu.cn

Thank you !

Artifact of DeepGo:

National University of Defense Technology

https://gitee.com/paynelin/DeepGo
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