
DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin, Pengfei Wang, Xu Zhou, Wei Xie, Gen Zhang, Kai Lu

National University of Defense Technology

Contact: phlin22@nudt.edu.cn

Reporter: Huiling Chen

1

mailto:phlin22@nudt.edu.cn

• PART 1 Background and Motivation

• PART 2 Design

• PART 3 Evaluations

• PART 4 Conclusion

2

• PART 1 Background and Motivation

• PART 2 Design

• PART 3 Evaluations

• PART 4 Conclusion

3

1. Background and Motivation

• Fuzzing

– Effective approach to discovering vulnerabilities

– e.g., AFL, Google’s OSS Fuzz

• Directed Greybox Fuzzing (DGF)

– Designed technique for testing the given target code locations

– Patch testing, bug reproduction, potential buggy code verification

4

1. Background and Motivation

• Directed Greybox Fuzzing (DGF)

Seed

Queue

Seed

Selection

Yes

seed

Fitness metric: whether the
seed is close to the target?

new

inputs

Cover New
Paths?

JUDGE
MENT?

YES

More mutants

NO

new

inputs

Less mutants

5

1. Background and Motivation

• However

– Heuristic methods lack foresight on paths that have not been exercised yet

– Hard-to-execute paths with complex constraints would hinder DGF

• For example

– Using BB distance, seeds with shorter distances are prioritized

– Complex constraints along seeds’ paths will hinder fuzzer from reaching targets

• State-of-the-art DGF techniques

– The state-of-the-art DGF works leverage heuristic methods to optimize fitness metrics or

exclude the irrelevant code locations.

• e.g., BEACON (path pruning), CAFL and WindRanger (data condition)

6

1. Background and Motivation

• Our goal

– Path Transition Model.

• Model DGF as a process of reaching the target

site through specific path transition sequences.

– Design a predictive directed greybox fuzzer

to predict the path transitions.

– Intelligently generate the optimal and

viable path to the target site.
𝑝𝑎𝑡ℎ1 𝑝𝑎𝑡ℎ2 𝑝𝑎𝑡ℎ3

7

1. Background and Motivation

• Challenges

– Challenge 1: How to predict path transitions that have not been taken?

– Challenge 2: How to determine the optimal path among large numbers of path

 transitions?

– Challenge 3: How to exercise the optimal path transition sequences by

 optimizing the fuzzing strategies?

8

1. Background and Motivation

• Solutions

– For Challenge 1

• Design the Virtual Ensemble Environment to imitate the path transition model and

 predict the path transitions.

– For Challenge 2

• Develop the Reinforcement Learning for Fuzzing model to learn the policy that can

 maximize sequence rewards.

– For Challenge 3

• Propose the concept of the action group and the MPSO algorithm to guide the fuzzer

 to exercise the optimal path transition sequences

9

• PART 1 Background and Motivation

• PART 2 Design

• PART 3 Evaluations

• PART 4 Conclusion

10

2. Design

2.1 Overview of DeepGo

Path Transition Model

11

2. Design

2.1 Overview of DeepGo

Virtual Ensemble Environment

12

2. Design

2.1 Overview of DeepGo

Reinforcement Learning for Fuzzing

13

2. Design

2.1 Overview of DeepGo

Fuzzing Optimization Component

14

2. Design

2.2 Design of Path transition model

Reward: effectiveness of path transitions

Expected sequence reward: effectiveness of actions

Seed value (Path value)：

 （1）seed distance to targets

 （2）the difficulty of satisfying the branch inversion

（3）execution speed

 （4）“favored”?

15

2. Design

2.2 Design of Path transition model

Reward:

Expected sequence reward:

Transition value:

Path transition:

16

2. Design

2.3 Design of Virtual Ensemble Environment

– Purpose: predict the potential path transitions and the corresponding rewards.

– Deep neural networks

– Experience reply buffer and predicted replay buffer

Predicted

Reply Buffer

17

2. Design

2.3 Design of Virtual Ensemble Environment

– Purpose: predict the potential path transitions and the corresponding rewards.

– Deep neural networks

• training:

• Gaussian probability distribution of the next paths and rewards

• Average of the probabilities and rewards of DNNs

– Experience reply buffer and predicted replay buffer

f:(path, action) → (next_path, reward) X Y

18

2. Design

2.3 Design of Virtual Ensemble Environment

 – Purpose: predict the potential path transitions and the corresponding rewards.

– Deep neural networks

– Experience reply buffer and predicted replay buffer

Predicted

Reply Buffer

19

2. Design

2.4 Reinforcement Learning for Fuzzing Model

– Purpose: learn the policy that can steer the fuzzer toward the high-reward path

transition sequences

– Actor network, Q-Critic network, V-Critic network

Policy π

𝑸𝝅 𝒔 𝒂

𝑽𝝅(𝐬)

20

2. Design

2.4 Reinforcement Learning for Fuzzing Model

– Purpose: learn the policy that can steer the fuzzer toward the high-reward path

transition sequences

– Actor network, Q-Critic network, V-Critic network

Policy π

𝑸𝝅 𝒔 𝒂

𝑽𝝅(𝐬)

21

2. Design

2.4 Reinforcement Learning for Fuzzing Model

– To give the RLF model foresight, we combine historical path transitions and predicted path

transitions to train RLF.

• Historical path transitions:

 - Fuzzer stay on a path and take actions to cause path transitions

 - Historical path transitions are stored in the historical reply buffer and loaded by the

 RLF model in each fuzzing cycle

actions path

transitions

historical path

transitions

loaded in each

fuzzing cycle

22

2. Design

2.4 Reinforcement Learning for Fuzzing Model

– To give the RLF model foresight, we combine historical path transitions and predicted path

transitions to train RLF.

• Predicted path transitions:

 - Well-trained VEE imitate path transition model

 - K-step branch rollout strategy to obtain predicted path transitions .

23

2. Design

2.5 Fuzzing Optimization

– Purpose: guide the fuzzer to exercise the optimal path transition sequences.

– Action group

– Multi-elements Particle Swarm Optimization (MPSO) algorithm

Policy π

𝑸𝝅 𝒔 𝒂

𝑽𝝅(𝐬)

Fuzzing

Strategy

24

2. Design

2.5 Fuzzing Optimization

Seed-selection (SS):

• Representing the probability of a seed being
selected to fuzz.

Seed-energy (SE) :
• Representing the energy assigned to the seed

Havoc-round (HR) :
• Representing the number of looping rounds

used to select different mutators and bytes
during the havoc stage.

Mutator (MT) :
• Representing the mutator selected to mutate

the seed.

Location (LC) :
• Representing the mutation location of the seed

that is selected to mutate

– Purpose

– Action group

– MPSO algorithm

25

2. Design

2.5 Fuzzing Optimization

– Purpose

– Action group

– Multi-elements Particle Swarm Optimization.

– Update the location to find the local_best and

global_best locations for each elements

– Optimize fuzzing strategies to realize optimal

path transition sequences.

Update particles

26

• PART 1 Background and Motivation

• PART 2 Design

• PART 3 Evaluations

• PART 4 Conclusion

27

3. Evaluations

• Benchmarks

• Baselines

– UniBench and CVE-Benchmark

– 25 programs with a total 100 targets

– WindRanger, BEACON, ParmeSan, and AFLGo

• Evaluation setup

– Repeat 5 times

– Run for 24 hours

28

3. Evaluations

• Time-to-Reach (TTR):

– DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON

(11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget.

– DeepGo demonstrates 3.23×, 1.72×, 1.81×, and 4.83× speedup compared to AFLGo,

BEACON, WindRanger, and ParmeSan, respectively

29

3. Evaluations

• Time-to-Reach (TTR):

– DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON

(11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget.

– DeepGo demonstrates 3.23×, 1.72×, 1.81×, and 4.83× speedup compared to AFLGo,

BEACON, WindRanger, and ParmeSan, respectively.

30

3. Evaluations

• Time-to-Exposure(TTE):

– DeepGo (19) exposed the most compared to

AFLGo (14), BEACON (13), WindRanger (16),

and ParmeSan (14).

– DeepGo demonstrated 2.61×, 3.32×, 2.43× and

2.53× speedup compared to AFLGo, BEACON,

WindRanger, and ParmeSan, respectively.

31

3. Evaluations

• Time-to-Exposure(TTE):

– DeepGo (19) exposed the most compared to

AFLGo (14), BEACON (13), WindRanger (16),

and ParmeSan (14).

– DeepGo demonstrated 2.61×, 3.32×, 2.43× and

2.53× speedup compared to AFLGo, BEACON,

WindRanger, and ParmeSan, respectively.

32

3. Evaluations

• Ablation study:

– Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment

• DeepGo-v: remove VEE from DeepGo

• DeepGo-r: remove RLF and FO from DeepGo

– DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and

DeepGo-r (18/80), respectively

– DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the

average TTR of reaching the target sites

33

3. Evaluations

• Ablation study:

– Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment

• DeepGo-v: remove VEE from DeepGo

• DeepGo-r: remove RLF and FO from DeepGo

– DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and

DeepGo-r (18/80), respectively

– DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the

average TTR of reaching the target sites

34

3. Evaluations

• Ablation study:

– Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment

• DeepGo-v: remove VEE from DeepGo

• DeepGo-r: remove RLF and FO from DeepGo

– DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and

DeepGo-r (18/80), respectively

– DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the

average TTR of reaching the target sites

35

3. Evaluations

• Setting of hyperparameters:

– Utilize DeepGo with different hyperparameter configurations to test 20 programs from

UniBench and recorded the mean TTR for each test case

– γ = 0.8 and k = 4 can achieve minimum TTR

– The setting of γ and k has a relatively small impact on TTR if the value of γ is

between [0.5, 0.9], and the value of k is between [3, 5]

36

• PART 1 Background and Motivation

• PART 2 Design

• PART 3 Evaluations

• PART 4 Conclusion

37

4. Conclusion

• We propose DeepGo: a predictive directed greybox fuzzer to

steer DGF to reach targets via optimal paths

– Propose the path transition model.

– Construct a Virtual Ensemble Environment to predict path transitions.

– Develop a Reinforcement Learning for Fuzzing model to learn the policy that

can steer the fuzzer toward the high-reward path transition sequences.

– Propose the concept of action group and the Multi-elements Particle Swarm

Optimization algorithm to steer fuzzer to realize the optimal and viable path

transition sequences.

38

4. Conclusion

• We propose DeepGo: a predictive directed greybox fuzzer to

steer DGF to reach targets via optimal paths

– Propose the path transition model.

– Construct a Virtual Ensemble Environment to predict path transitions.

– Develop a Reinforcement Learning for Fuzzing model to learn the policy that

can steer the fuzzer toward the high-reward path transition sequences.

– Propose the concept of action group and the Multi-elements Particle Swarm

Optimization algorithm to steer fuzzer to realize the optimal and viable path

transition sequences.

39

4. Conclusion

• We propose DeepGo: a predictive directed greybox fuzzer to

steer DGF to reach targets via optimal paths

– Propose the path transition model.

– Construct a Virtual Ensemble Environment to predict path transitions.

– Develop a Reinforcement Learning for Fuzzing model to learn the policy that

can steer the fuzzer toward the high-reward path transition sequences.

– Propose the concept of action group and the Multi-elements Particle Swarm

Optimization algorithm to steer fuzzer to realize the optimal and viable path

transition sequences.

40

4. Conclusion

• We propose DeepGo: a predictive directed greybox fuzzer to

steer DGF to reach targets via optimal paths

– Propose the path transition model.

– Construct a Virtual Ensemble Environment to predict path transitions.

– Develop a Reinforcement Learning for Fuzzing model to learn the policy that

can steer the fuzzer toward the high-reward path transition sequences.

– Propose the concept of action group and the Multi-elements Particle Swarm

Optimization algorithm to steer fuzzer to realize the optimal and viable path

transition sequences.

41

Email:

If you have some questions about our work,
welcome to contact us!

phlin22@nudt.edu.cn

Thank you !

Artifact of DeepGo:

National University of Defense Technology

https://gitee.com/paynelin/DeepGo

42

mailto:phlin22@nudt.edu.cn
https://gitee.com/paynelin/DeepGo

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4: 1. Background and Motivation
	幻灯片 5: 1. Background and Motivation
	幻灯片 6: 1. Background and Motivation
	幻灯片 7: 1. Background and Motivation
	幻灯片 8: 1. Background and Motivation
	幻灯片 9: 1. Background and Motivation
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15: 2. Design
	幻灯片 16: 2. Design
	幻灯片 17: 2. Design
	幻灯片 18: 2. Design
	幻灯片 19: 2. Design
	幻灯片 20: 2. Design
	幻灯片 21: 2. Design
	幻灯片 22: 2. Design
	幻灯片 23: 2. Design
	幻灯片 24: 2. Design
	幻灯片 25: 2. Design
	幻灯片 26: 2. Design
	幻灯片 27
	幻灯片 28: 3. Evaluations
	幻灯片 29: 3. Evaluations
	幻灯片 30: 3. Evaluations
	幻灯片 31: 3. Evaluations
	幻灯片 32: 3. Evaluations
	幻灯片 33: 3. Evaluations
	幻灯片 34: 3. Evaluations
	幻灯片 35: 3. Evaluations
	幻灯片 36: 3. Evaluations
	幻灯片 37
	幻灯片 38: 4. Conclusion
	幻灯片 39: 4. Conclusion
	幻灯片 40: 4. Conclusion
	幻灯片 41: 4. Conclusion
	幻灯片 42

