

DeepGo: Predictive Directed Greybox Fuzzing

Reporter: Huiling Chen

Peihong Lin, Pengfei Wang, Xu Zhou, Wei Xie, Gen Zhang, Kai Lu^{\boxtimes}

National University of Defense Technology

Contact: phlin22@nudt.edu.cn

- PART 1 Background and Motivation
- PART 2 Design
- PART 3 Evaluations
- PART 4 Conclusion

- PART 1 Background and Motivation
- PART 2 Design
- PART 3 Evaluations
- PART 4 Conclusion

• Fuzzing

- Effective approach to discovering vulnerabilities
- -e.g., AFL, Google's OSS Fuzz

Directed Greybox Fuzzing (DGF)

- Designed technique for testing the given target code locations
- Patch testing, bug reproduction, potential buggy code verification

Directed Greybox Fuzzing (DGF)

State-of-the-art DGF techniques

- The state-of-the-art DGF works leverage heuristic methods to optimize fitness metrics or exclude the irrelevant code locations.
 - e.g., BEACON (path pruning), CAFL and WindRanger (data condition)

• However

- Heuristic methods lack foresight on paths that have not been exercised yet
- Hard-to-execute paths with complex constraints would hinder DGF
- For example
 - Using BB distance, seeds with shorter distances are prioritized
 - Complex constraints along seeds' paths will hinder fuzzer from reaching targets

Our goal

- Path Transition Model.

- Model DGF as a process of reaching the target site through specific path transition sequences.
- Design a predictive directed greybox fuzzer to predict the path transitions.
- Intelligently generate the optimal and viable path to the target site.

Challenges

- Challenge 1: How to predict path transitions that have not been taken?
- Challenge 2: How to determine the optimal path among large numbers of path transitions?

- Challenge 3: How to exercise the optimal path transition sequences by optimizing the fuzzing strategies?

Solutions

- For Challenge 1

• Design the Virtual Ensemble Environment to imitate the path transition model and predict the path transitions.

- For Challenge 2

• Develop the **Reinforcement Learning for Fuzzing model** to learn the policy that can maximize sequence rewards.

- For Challenge 3

 Propose the concept of the action group and the MPSO algorithm to guide the fuzzer to exercise the optimal path transition sequences

PART 1 Background and Motivation

- PART 2 Design
- PART 3 Evaluations
- PART 4 Conclusion

2.1 Overview of DeepGo

2.1 Overview of DeepGo

2.1 Overview of DeepGo

2.1 Overview of DeepGo

Fuzzing Optimization Component

2.2 Design of Path transition model

Reward: effectiveness of path transitions

Expected sequence reward: effectiveness of actions

Seed value (Path value):

- (1) seed distance to targets
- (2) the difficulty of satisfying the branch inversion
- (3) execution speed
- (4) "favored"?

$$V^s(p_t) = W_1 \cdot d_s + W_2 \cdot ED_s + W_3 \cdot Ex_s + W_4 \cdot Fv_s$$

Reward:

2.2 Design of Path transition model

 $r(p_t, a_t, p_{t+1}) = V^s(p_{t+1}) - V^s(p_t)$

Path transition:

 (p_t, a_t, p_{t+1}, r_t)

Expected sequence reward:

$$Q_{\pi}(p,a) = \mathop{E}_{p' \sim P} [r(p,a,p') + \gamma V_{\pi}^t(p')]$$

Transition value:

$$V_{\pi}^{t}(p') = \begin{cases} 0, & \text{if } p = p_{ter} \\ \sum_{a} \pi(a|p) \cdot Q_{\pi}(p',a), & \text{others} \end{cases}$$

2.3 Design of Virtual Ensemble Environment

- Purpose: predict the potential path transitions and the corresponding rewards.
- Deep neural networks
- Experience reply buffer and predicted replay buffer

2.3 Design of Virtual Ensemble Environment

- Purpose: predict the potential path transitions and the corresponding rewards.
- Deep neural networks
 - training: $f:(path, action) \rightarrow (next_path, reward) \mathbf{X} \longrightarrow \mathbf{Y}$
 - Gaussian probability distribution of the next paths and rewards

 $P(p_{t+1}, r_t | p_t, a_t, \theta) = N(\mu_{\theta}(p_t, a_t), \Sigma_{\theta}(p_t, a_t))$

• Average of the probabilities and rewards of DNNs

$$P(p_{t+1}, r_t | p_t, a_t, \theta) = \frac{1}{n} \sum_{i=1}^n P(p_{t+1}, r_t | p_t, a_t, \theta_i)$$

– Experience reply buffer and predicted replay buffer

2.3 Design of Virtual Ensemble Environment

- Purpose: predict the potential path transitions and the corresponding rewards.
- Deep neural networks
- Experience reply buffer and predicted replay buffer

2.4 Reinforcement Learning for Fuzzing Model

- Purpose: learn the policy that can steer the fuzzer toward the high-reward path transition sequences
- Actor network, Q-Critic network, V-Critic network

2.4 Reinforcement Learning for Fuzzing Model

- Purpose: learn the policy that can steer the fuzzer toward the high-reward path transition sequences
- Actor network, Q-Critic network, V-Critic network

2.4 Reinforcement Learning for Fuzzing Model

- To give the RLF model foresight, we combine historical path transitions and predicted path transitions to train RLF.
 - Historical path transitions:
 - Fuzzer stay on a path and take actions to cause path transitions

- Historical path transitions are stored in the historical reply buffer and loaded by the

RLF model in each fuzzing cycle

2.4 Reinforcement Learning for Fuzzing Model

- To give the RLF model foresight, we combine historical path transitions and predicted path transitions to train RLF.
 - Predicted path transitions:
 - Well-trained VEE imitate path transition model
 - K-step branch rollout strategy to obtain predicted path transitions .

2.5 Fuzzing Optimization

- Purpose: guide the fuzzer to exercise the optimal path transition sequences.
- Action group
- Multi-elements Particle Swarm Optimization (MPSO) algorithm

2.5 Fuzzing Optimization

- Purpose
- Action group
- MPSO algorithm

Seed-selection (SS):

• Representing the probability of a seed being selected to fuzz.

Seed-energy (SE):

• Representing the energy assigned to the seed

Havoc-round (HR) :

• Representing the number of looping rounds used to select different mutators and bytes during the havoc stage.

Mutator (MT)

• Representing the mutator selected to mutate the seed.

Location (LC)

• Representing the mutation location of the seed that is selected to mutate

2.5 Fuzzing Optimization

- Purpose
- Action group

- Multi-elements Particle Swarm Optimization.

- Update the location to find the local_best and global_best locations_for each elements
- Optimize fuzzing strategies to realize optimal path transition sequences.

Algorithm 1 MPSO Algorithm							
Input: $\Omega_{(s,p)}$							
Output: U_s , $\Omega_{(s,p')}$							
1: Initial($\Omega_{(s,p)}$)							
2: while fuzzing do							
3: for (s_i, p_i) in $\Omega_{(s,p)}$ do							
4: if $Prob_Sel_s(p_i(SS)) ==$ True then							
5: $mn_i \leftarrow Cal_MN(p_i(SE))$							
6: for j in mn_i do							
7: $hr_j \leftarrow \$Prob_Sel_h(p_i(\mathbf{HR}), hm_j \leftarrow <>$							
8: for k in hr_j do							
9: $lc_k \leftarrow Prob_Sel_l(p_i(\mathbf{LC})),$							
10: $mt_k \leftarrow Prob_Sel_m(p_i(\mathbf{MT})),$							
11: $hm_i \leftarrow hm_i \cup (lc_k, mt_k)$							
12: end for							
13: $new_input = Mutate(hm_i, s_i)$							
14: $eff_{local}, eff_{global} = Cal_eff(s_i, new_input)$							
15: Update(lbest, gbest, p_i)							
16: end for							
17: end if							
18: end for							
19: end while							

- PART 1 Background and Motivation
- PART 2 Design
- PART 3 Evaluations
- PART 4 Conclusion

Benchmarks

- UniBench and CVE-Benchmark
- 25 programs with a total 100 targets
- Baselines
 - WindRanger, BEACON, ParmeSan, and AFLGo

Evaluation setup

- Repeat 5 times
- Run for 24 hours

• Time-to-Reach (TTR):

- DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON (11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget.
- DeepGo demonstrates 3.23×, 1.72×, 1.81×, and 4.83× speedup compared to AFLGo, BEACON, WindRanger, and ParmeSan, respectively

• Time-to-Reach (TTR):

- DeepGo can reach the most (73/80) target sites compared to AFLGo (22/80), BEACON (11/80), WindRanger (19/80), and ParmeSan (9/80) within the time budget.
- DeepGo demonstrates 3.23×, 1.72×, 1.81×, and 4.83× speedup compared to AFLGo, BEACON, WindRanger, and ParmeSan, respectively.

• Time-to-Exposure(TTE):

- DeepGo (19) exposed the most compared to AFLGo (14), BEACON (13), WindRanger (16), and ParmeSan (14).
- DeepGo demonstrated 2.61×, 3.32×, 2.43× and 2.53× speedup compared to AFLGo, BEACON, WindRanger, and ParmeSan, respectively.

Prog.	CVE-ID	AFLGo	BEACON	WindRa	ParmeS	DeepGo
binutils _{2.26}	2016-4487	2.33m	0.63m	1.21m	0.95m	1.34m
	2016-4488	4.23m	32.1m	3.32m	2.62m	2.69m
	2016-4489	3.36m	2.98m	5.88m	2.31m	1.23m
	2016-4490	1.15m	2.35m	2.63m	0.82m	1.97m
	2016-4491	448m	258m	298m	212m	129m
	2016-4492	10.8m	43.6m	7.47m	4.33m	6.94m
	2016-6131	348m	292m	318m	244m	68.1m
libming _{4.48}	2018-8807	331m	267m	171m	301m	101m
	2018-8962	234m	163m	121m	198m	54.8m
	2018-11095	T.O.	914m	1311m	T.O.	812m
	2018-11225	T.O.	438m	996m	T.O.	128m
LibPNG _{1.5.1}	2011-2501	10.2m	N/A	7.81m	4.53m	3.46m
	2011-3328	69.1m	N/A	49.3m	193m	17.5m
	2015-8540	0.88m	N/A	0.96m	3.41m	5.65m
xmllint _{2.9.4}	2017-9047	T.O.	T.O.	T.O.	T.O.	783m
	2017-9048	T.O.	T.O.	T.O.	T.O.	1389m
	2017-9049	T.O.	T.O.	T.O.	T.O.	T.O.
	2017-9050	T.O.	Т.О.	T.O.	T.O.	911m
Lrzip _{0.631}	2017-8846	348m	156m	223m	466m	131m
	2018-11496	201m	98.1m	169m	126m	78.9m
speedup		2.61 ×	3.32×	2.43 ×	2.53 ×	-
mean \hat{A}_{12}		0.79	0.72	0.75	0.81	-
mean p-values		0.018	0.032	0.026	0.011	-

• Time-to-Exposure(TTE):

- DeepGo (19) exposed the most compared to AFLGo (14), BEACON (13), WindRanger (16), and ParmeSan (14).
- DeepGo demonstrated 2.61×, 3.32×, 2.43× and
 2.53× speedup compared to AFLGo, BEACON,
 WindRanger, and ParmeSan, respectively.

Prog.	CVE-ID	AFLGo	BEACON	WindRa	ParmeS	DeepGo
binutils _{2.26}	2016-4487	2.33m	0.63m	1.21m	0.95m	1.34m
	2016-4488	4.23m	32.1m	3.32m	2.62m	2.69m
	2016-4489	3.36m	2.98m	5.88m	2.31m	1.23m
	2016-4490	1.15m	2.35m	2.63m	0.82m	1.97m
	2016-4491	448m	258m	298m	212m	129m
	2016-4492	10.8m	43.6m	7.47m	4.33m	6.94m
	2016-6131	348m	292m	318m	244m	68.1m
libming _{4.48}	2018-8807	331m	267m	171m	301m	101m
	2018-8962	234m	163m	121m	198m	54.8m
	2018-11095	T.O.	914m	1311m	T.O.	812m
	2018-11225	T.O.	438m	996m	T.O.	128m
LibPNG _{1.5.1}	2011-2501	10.2m	N/A	7.81m	4.53m	3.46m
	2011-3328	69.1m	N/A	49.3m	193m	17.5m
	2015-8540	0.88m	N/A	0.96m	3.41m	5.65m
xmllint _{2.9.4}	2017-9047	T.O.	T.O.	T.O.	T.O.	783m
	2017-9048	T.O.	T.O.	T.O.	T.O.	1389m
	2017-9049	T.O.	T.O.	T.O.	T.O.	T.O.
	2017-9050	T.O.	Т.О.	T.O.	T.O.	911m
Lrzip _{0.631}	2017-8846	348m	156m	223m	466m	131m
	2018-11496	201m	98.1m	169m	126m	78.9m
speedup		2.61 ×	3.32×	2.43 ×	2.53×	-
mean \hat{A}_{12}		0.79	0.72	0.75	0.81	-
mean p-values		0.018	0.032	0.026	0.011	-

- Ablation study:
 - Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment
 - DeepGo-v: remove VEE from DeepGo
 - DeepGo-r: remove RLF and FO from DeepGo
 - DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and DeepGo-r (18/80), respectively
 - DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the average TTR of reaching the target sites

- Ablation study:
 - Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment
 - DeepGo-v: remove VEE from DeepGo
 - DeepGo-r: remove RLF and FO from DeepGo
 - DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and
 DeepGo-r (18/80), respectively
 - DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the average TTR of reaching the target sites

- Ablation study:
 - Run DeepGo, DeepGo-v and DeepGo-r on UniBench for the TTR experiment
 - DeepGo-v: remove VEE from DeepGo
 - DeepGo-r: remove RLF and FO from DeepGo
 - DeepGo (73/80) can reach much more target sites than DeepGo-v (32/80) and DeepGo-r (18/80), respectively
 - DeepGo outperforms DeepGo-v and DeepGo-r by 2.05× and 3.72×, respectively, in the average TTR of reaching the target sites

• Setting of hyperparameters:

- Utilize DeepGo with different hyperparameter configurations to test 20 programs from UniBench and recorded the mean TTR for each test case
- $-\gamma = 0.8$ and k = 4 can achieve minimum TTR
- The setting of γ and k has a relatively small impact on TTR if the value of γ is between [0.5, 0.9], and the value of k is between [3, 5]

- PART 1 Background and Motivation
- PART 2 Design
- PART 3 Evaluations
- PART 4 Conclusion

- We propose DeepGo: a predictive directed greybox fuzzer to steer DGF to reach targets via optimal paths
 - Propose the path transition model.
 - Construct a Virtual Ensemble Environment to predict path transitions.
 - Develop a Reinforcement Learning for Fuzzing model to learn the policy that can steer the fuzzer toward the high-reward path transition sequences.
 - Propose the concept of action group and the Multi-elements Particle Swarm Optimization algorithm to steer fuzzer to realize the optimal and viable path transition sequences.

- We propose DeepGo: a predictive directed greybox fuzzer to steer DGF to reach targets via optimal paths
 - Propose the path transition model.
 - Construct a Virtual Ensemble Environment to predict path transitions.
 - Develop a Reinforcement Learning for Fuzzing model to learn the policy that can steer the fuzzer toward the high-reward path transition sequences.
 - Propose the concept of action group and the Multi-elements Particle Swarm Optimization algorithm to steer fuzzer to realize the optimal and viable path transition sequences.

- We propose DeepGo: a predictive directed greybox fuzzer to steer DGF to reach targets via optimal paths
 - Propose the path transition model.
 - Construct a Virtual Ensemble Environment to predict path transitions.
 - Develop a Reinforcement Learning for Fuzzing model to learn the policy that can steer the fuzzer toward the high-reward path transition sequences.
 - Propose the concept of action group and the Multi-elements Particle Swarm Optimization algorithm to steer fuzzer to realize the optimal and viable path transition sequences.

- We propose DeepGo: a predictive directed greybox fuzzer to steer DGF to reach targets via optimal paths
 - Propose the path transition model.
 - Construct a Virtual Ensemble Environment to predict path transitions.
 - Develop a Reinforcement Learning for Fuzzing model to learn the policy that can steer the fuzzer toward the high-reward path transition sequences.
 - Propose the concept of action group and the Multi-elements Particle Swarm
 Optimization algorithm to steer fuzzer to realize the optimal and viable path transition sequences.

Thank you !

If you have some questions about our work, welcome to contact us!

Email: phlin22@nudt.edu.cn

Artifact of DeepGo: https://gitee.com/paynelin/DeepGo

National University of Defense Technology