IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang[†], Weitong Li[§], Roland van Rijswijk-Deij^{§‡}, Taekyoung "Ted" Kwon[†], Taejoong Chung[§] [†]Seoul National University, [‡]University of Twente, [§]Virginia Tech

SEOUL NATIONAL UNIVERSITY

UNIVERSITY **OF TWENTE**.

- BGP is one of the most crucial components for sustaining global network connectivity
 - However, BGP was not designed with security in mind (e.g., no route origin authentication)

THE POWER OF FALSE ADVERTISING -

How an Indonesian ISP took down the mighty Google for 30 minutes

Internet's web of trust let a company you never heard of block your Gmail.

SEAN GALLAGHER - 11/6/2012, 11:07 AM

Google's services went offline for many users for nearly a half-hour on the evening of November 5, thanks to an erroneous routing message broadcast by Moratel, an Indonesian telecommunications company. The outage might have lasted even longer if it hadn't been spotted by a network engineer at CloudFlare who had a friend in a position to fix the problem.

- BGP is one of the most crucial components for sustaining global network connectivity
 - However, BGP was not designed with security in mind (e.g., no route origin authentication)

THE POWER OF FALSE ADVERTISING —	
How an Indonesiar	Catalin Cimpanu February 14, 2022
mighty Google for	KlaySwap cry

Internet's web of trust let a company you

SEAN GALLAGHER - 11/6/2012, 11:07 AM

Google's services went offline for n 5, thanks to an erroneous routing in telecommunications company. The spotted by a network engineer at 0

Hackers have stolen roughly \$1.9 million from South Korean cryptocurrency platform KLAYswap after they pulled off a rare and clever BGP hijack against the server infrastructure of one of the platform's providers.

pto users lose funds after BGP hijack

- BGP is one of the most crucial components for sustaining global network connectivity
 - However, BGP was not designed with security in mind (e.g., no route origin authentication)

- BGP is one of the most crucial components for sustaining global network connectivity
 - However, BGP was not designed with security in mind (e.g., no route origin authentication)

Efforts to improve BGP security

- Internet Routing Registry (IRR) (1995)
 - widely used for sharing global routing information (> 68% of ASes)
 - lacks an authentication mechanism & has many outdated entries
- Resource Public Key Infrastructure (RPKI) (2008)
 - provides a cryptographically verifiable method of binding IP prefixes to their respective origin ASes
 - narrower coverage than IRR
 - has certificate dependencies in the hierarchy of RPKI
 - configuration issues in Route Origin Authorization (ROA) objects

Efforts to improve BGP security

- Internet Routing Registry (IRR) (1995)
 - widely used for sharing global routing information (> 68% of ASes)
 - lacks an authentication mechanism & has many outdated entries

respective origin Ases

- narrower coverage than IRR
 - has certificate dependencies in the hierarchy of RPKI
 - configuration issues in Route Origin Authorization (ROA) objects

Take the strengths of both IRR and RPKI in order to improve the BGP security

Measurement	# of
Period	Objects
2011/01 – 2023/03	333 K
2016/08 - 2023/03	1.43 M
2019/12 - 2023/03	2.69 M

RADb + IRRs of Regional Internet Registries

The deployment status of IRR and RPKI

The deployment status of IRR and RPKI

The deployment status of IRR and RPKI

Are they consistent with "each other"?

• For IP prefixes registered in both IRR and RPKI, we examine **RPKI**

Prefixes

% of

whether they have the same origin AS as the one registered in

Do inconsistent IP prefixes appear in BGP announcements?

 For BGP announcements verifiable through both RPKI and IRR, we track their frequency over time

Do inconsistent IP prefixes appear in BGP announcements?

• For BGP announcements verifiable through both RPKI and IRR, we track their frequency over time

Example: filtering with age

16.3

Age (years)

Example: filtering with age

1.6% of consistent IRR objects

How to deal with inconsistent IRR objects?

- Filtering IRR objects with their ages
 - setting a "good" threshold is challenging
 - conservatively \rightarrow low coverage, aggressively \rightarrow high mis-classification
- Utilizing RPKI to filter out inconsistent IRR objects • RPKI only covers 44% of IRR objects
- Leveraging patterns of BGP announcements datasets to identify inconsistent IRR objects
 - can be applied to all IRR objects!

Size of Monitoring Window

Monitoring window

a time period from the start time t to the latest date of our dataset

Lifespan

the difference in dates between the first and last observations, divided by a monitoring window size

Uptime

the number of days that **BGP** announcements have been observed, divided by a monitoring window size

Relative uptime uptime/lifespan

Size of Monitoring Window

Monitoring window a time period from the start time t to the latest date of our dataset

Lifespan

the difference in dates between the first and last observations, divided by a monitoring window size

• Uptime

the number of days that **BGP** announcements have been observed, divided by a monitoring window size

 Relative uptime uptime/lifespan

Size of Monitoring Window

Monitoring window a time period from the start time t to the latest date of our dataset

• Lifespan

the difference in dates between the first and last observations, divided by a monitoring window size

• Uptime the number of days that **BGP** announcements have

consistent IRR objects tend to be more recently used

Size of Monitoring Window

Monitoring window a time period from the start time t to the latest date of our dataset

Lifespan

the difference in dates between the first and last observations, divided by a monitoring window size

consistent IRR objects tend to be more frequently announced in **BGP** than inconsistent ones

monitoring window size

 Relative uptime uptime/lifespan

Size of Monitoring Window

Monitoring window a time period from the start time t to the latest date of our dataset

Lifespan

the difference in dates between the first and last observations, divided by a monitoring window size

• Uptime

the number of days that **BGP** announcements have been observed, divided by a monitoring window size

 Relative uptime uptime/lifespan

Size of Monitoring Window

Monitoring window a time period from the start time t to the latest date of our dataset

Size of Monitoring Window

Monitoring window a time period from the start time t to the latest date of our dataset

Lifespan

Inconsistent ones become no longer announced in **BGP**

Uptime

the number of days that **BGP** announcements have been observed, divided by a monitoring window size

 Relative uptime uptime/lifespan

Features

- Features
 - More than 300 features for each prefix-origin pair in IRR
- Metrics:
 - Lifespan, Uptime, Relative uptime
 - # of Ups/Downs, Active/Inactive Days

Model LightGBM

Classification with rejection

Evaluation with two ground truth datasets

- RPKI
 - ROAs: IP prefix, origin AS
 - Origin AS is the owner of the IP prefix
- Transfer logs from RIRs
 - IP prefixes can be transferred between organizations
 - Transfer logs: IP prefix, source and recipient organizations
 - Recipient organization is the owner of the IP prefix

the percentage of BGP announcements that are covered by the respective IRR dataset

the percentage of BGP announcements that are valid against the respective IRR dataset

Discussion and future work

- Who would be responsible for applying our technique?
 - IRR vs. network operators

- Reducing false negatives
 - IRR object for each IP prefix

- Source code and dataset are publicly available
 - irredicator.netsecurelab.org

Grouping IRR objects by the prefixes and select the most up-to-date

Conclusion

- and **RPKI**
 - found that the number of inconsistent IRR objects increases

- Analyze the characteristics of the inconsistent IRR objects

- Propose an ML-based IRR pruning technique
 - successfully filtered out stale IRR objects (58.5% of the entire IRR)

Conduct a longitudinal study of the inconsistencies between IRR

captured distinct patterns between consistent and inconsistent IRR objects

Thank you

Minhyeok Kang

<u>mhkang@mmlab.snu.ac.kr</u>

mmlab.snu.ac.kr/~mhkang/

irredicator.netsecurelab.org/

Backup

Features

- 13 metrics
 - Uptime, Lifespan, Relative Uptime (=3)
 - # of Ups / Downs (=2)
 - min, max, avg, and std of Active/Inactive days (=8)
- Total 312 features
 - Window based features
 - 13 metrics * 20 monitoring windows = 260 features
 - Statistics for each metric
 - 13 metrics * 4 statistics = 52 features