5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen¹, Phillip Porras², Vinod Yegneswaran², Ashish Gehani², Zhiqiang Lin¹

¹The Ohio State University, ²SRI International

Presented at the 31st ISOC Network and Distributed System Security Symposium (NDSS'24), San Diego, CA, February 28th 2024

Introduction	Motivation 000	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O

Introduction	Motivation 000	O-RAN oo	5G-Spector 00	Evaluation 0000	Future Work	References O

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
•	000	oo	00	0000		O

•	000	00	00	0000	00	0
Evaluatio	n of Collula					

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
•	000	oo	00	0000		0

Why do we care about 5G Security and Privacy?

Why do we care about 5G Security and Privacy?

The vulnerable cellular network standard

Introduction O	Motivation • 00	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Why 50	G is not Sec	ure				

Introduction O	Motivation • 00	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Why 50	G is not Sec	ure				

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	•00	oo	00	0000		O
Why 50	G is not Sec	ure				

Introduction O	Motivation ●○○	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Why 50	G is not Sec	ure				

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	•00	00	00	0000		O
Why 50	G is not Sec	ure				

Introduction O	Motivation •00	O-RAN 00	5G-Spector 00	Evaluation 0000	Future Work	
Why 50	G is not Sec	ure				

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	•00	00	00	0000		O
Why 50	G is not Sec	ure				

Initial Messages Not Encrypted & Integrity Protected

Introduction O	Motivation 000	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Threat	Model					

Adversary UEs

Introduction O	Motivation OOO	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Threat	Model					

Adversary UEs

Man-In-the-Middle Attacker

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	○●○	00	00	0000		O
Threat	Model					

Adversary UEs

Man-In-the-Middle Attacker

Signal Injector

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	○●○	00	00	0000		O
Threat	Model					

Adversary UEs

Man-In-the-Middle Attacker

Signal Injector

(\$2000)

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	○●○	00	00	0000		O
Threat	Model					

Adversary UEs

Man-In-the-Middle Attacker

Signal Injector

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	00	0000		O
Threat	Model					

Adversary UEs

Man-In-the-Middle Attacker

Signal Injector

5G Base Station Distributed Denial-of-Service (DDoS) Attack Scenario

5G User Location Tracking Attack Scenario

Can we fix the standards to eliminate these attacks?

Can we fix the standards to eliminate these attacks?

Currently very challenging due to numerous concerns

- Extremely Complicated Standard
- Backward Compatibility
- ► Performance and User Experience
- Overhead Constraint

▶

Introduction O	Motivation	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Attack	Scenarios					

Can we fix the standard body to eliminate these attacks?

Currently very challenging due to various concerns

How to defend against these attacks?

Introduction Motivation O-RAN 5G-Spector Evaluation OOO PANI (O DANI)

Our Key Insight: OpenRAN (O-RAN)

Introduction Motivation O-RAN 5G-Spector Evaluation O-O-CON CONTROL CO

Our Key Insight: OpenRAN (O-RAN)

What is OpenRAN (O-RAN) [o-r]

► Represent a new software-defined open cellular network architecture

What is OpenRAN (O-RAN) [o-r]

- ► Represent a new software-defined open cellular network architecture
- ► Founded in 2018 by O-RAN Alliance

What is OpenRAN (O-RAN) [o-r]

- ▶ Represent a new software-defined open cellular network architecture
- ► Founded in 2018 by O-RAN Alliance
- ► Adopted by 32 mobile network operator worldwide (as of 2/2024)

Deployments of O-RAN based technology and solutions from map.o-ran.org

► Disaggregation

- ► Disaggregation
- Modularization (xApps / rApps)

- Disaggregation
- Modularization (xApps / rApps)
- ► Interoperability

- ► Disaggregation
- Modularization (xApps / rApps)
- ► Interoperability
- Open Interfaces

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	●0	0000		O
Challen	ges and Sol	utions				

► Visibility: Telemetry from existing O-RAN service models are insufficient for security

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	●○	0000		O
Challen	ges and Sol	utions				

- ► Visibility: Telemetry from existing O-RAN service models are insufficient for security
- **Extensibility**: Extensible framework dealing with current and evolving attacks

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	●○	0000		O
Challen	ges and Sol	utions				

- ► Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ► Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ Efficiency: Capability to process data packets and produce alerts with low latency

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	●○	0000		O
Challen	ges and Sol	utions				

- ► Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ► Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ Efficiency: Capability to process data packets and produce alerts with low latency

5G-Spector Solutions

MobiFlow [WPYL22] collecting UE state transitions and aggregated RAN statistics

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	●○	0000		O
Challen	ges and Sol	utions				

- ► Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ► Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ Efficiency: Capability to process data packets and produce alerts with low latency

5G-Spector Solutions

- **MobiFlow** [WPYL22] collecting UE state transitions and aggregated RAN statistics
- Security xApp MobieXpert as a "plug-n-play" intrusion detection service on the nRT-RIC

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	●○	0000		O
Challen	ges and Sol	utions				

- ► Visibility: Telemetry from existing O-RAN service models are insufficient for security
- ► Extensibility: Extensible framework dealing with current and evolving attacks
- ▶ Efficiency: Capability to process data packets and produce alerts with low latency

5G-Spector Solutions

- **MobiFlow** [WPYL22] collecting UE state transitions and aggregated RAN statistics
- Security xApp MobieXpert as a "plug-n-play" intrusion detection service on the nRT-RIC
- **P-BEST** [LP99] w/ a decoupled architecture and efficient IDS programming language

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	○●	0000		O
5G-Spe	ctor Design					

IDS Rule Set

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	○●	0000		O
5G-Spe	ctor Design					

RAN Data Plane

- > Open-sourced UE and RAN implementations (LTE / 5G)
- Simulation or commodity SDRs

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	○●	0000		O
5G-Spe	ctor Design					

RAN Data Plane

- > Open-sourced UE and RAN implementations (LTE / 5G)
- Simulation or commodity SDRs

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	○●	0000		O
5G-Spe	ctor Design					

- > xApp Registration and Subscription management
- > Telemetry Report & Collection (MobiFlow)

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	○●	0000		O
5G-Spe	ctor Design					

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	○●	0000		O
5G-Spe	ctor Design					

5G-Spector xApp Layer

- P-Best programming framework
- > Attack signatures / rules integration
- > Real-time alert notifications

IDS Rule Set

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	00	•000		O

Attack	Layer	Exploited L3 Message	New	Detected
BTS RC Depletion	RRC	ConnectionRequest (Fabricated)	0	\checkmark
Blind DoS	RRC	ConnectionRequest (Replayed TMSI)	0	~
	NAS	$AuthRequest \gets AttachReject$	0	~
	NAS	$SecModeCmd \leftarrow AttachReject$	•	\checkmark
Downlink	NAS	$AttachAccept\ \leftarrow\ AttachReject$	•	\checkmark
DoS	NAS	$AuthRequest \leftarrow ServiceReject$	•	\checkmark
	NAS	$SecModeCmd \leftarrow ServiceReject$	•	\checkmark
	NAS	$AttachAccept\ \leftarrow\ ServiceReject$	•	\checkmark
Unlink Des	NAS	AttachReq	0	\checkmark
Uplink D05	NAS	$ServiceReq \leftarrow ServiceReq \text{ (Invalid MAC)}$	•	\checkmark
Uplink IMSI Extractor	NAS	AttachReq (Unknown TMSI)	0	\checkmark
	NAS	AuthRequest \leftarrow IdentityRequest (IMSI)	0	\checkmark
Downlink	NAS	AuthRequest \leftarrow IdentityRequest (IMEI)	•	\checkmark
IMSI	NAS	AuthRequest \leftarrow IdentityRequest (TMSI)	•	\checkmark
Extractor	NAS	$SecModeCmd \leftarrow IdentityRequest (IMSI)$	•	\checkmark
	NAS	$AttachAccept \ \leftarrow \ IdentityRequest \ \textit{(IMSI)}$	•	\checkmark
Null Cipher	RRC	$SecModeComplete \leftarrow SecModeFailure$	0	~
& Integrity	NAS	$SecModeComplete \leftarrow SecModeReject$	٠	\checkmark

Table: All L3 cellular attacks and variants replicated and evaluated ($A \leftarrow B$ indicates message B overwrites A).

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	00	•000		O

Attack	Layer	Exploited L3 Message	New	Detected
BTS RC Depletion	RRC	ConnectionRequest (Fabricated)	0	√
Blind DoS	RRC	ConnectionRequest (Replayed TMSI)	0	\checkmark
	NAS	$AuthRequest \gets AttachReject$	0	√
	NAS	SecModeCmd ← AttachReject		~
Downlink	NAS	AttachAccept AttachReject		~
Dos	NAS	AuthRequest ServiceReject		*
	NAS	AttachAccept \leftarrow ServiceReject	ě	√
Unlink DoS	NAS	AttachReq ← AttachReq (Invalid IMSI)	0	\checkmark
Opinik D03	NAS	$ServiceReq \leftarrow ServiceReq \text{ (Invalid MAC)}$	•	\checkmark
Uplink IMSI Extractor	NAS	AttachReq (Unknown TMSI)	0	\checkmark
	NAS	AuthRequest \leftarrow IdentityRequest (IMSI)	0	\checkmark
Downlink	NAS	AuthRequest \leftarrow IdentityRequest (IMEI)	•	\checkmark
IMSI	NAS	$AuthRequest \leftarrow IdentityRequest \ \textit{(TMSI)}$	•	\checkmark
Extractor	NAS	$SecModeCmd \leftarrow IdentityRequest (IMSI)$	•	\checkmark
	NAS	$AttachAccept \ \leftarrow \ IdentityRequest \ \textit{(IMSI)}$	•	\checkmark
Null Cipher	RRC	$SecModeComplete \leftarrow SecModeFailure$	0	~
& Integrity	NAS	$SecModeComplete \gets SecModeReject$	•	\checkmark

Table: All L3 cellular attacks and variants replicated and evaluated ($A \leftarrow B$ indicates message B overwrites A).

Evaluation w/ Simulated Attacks and Variants

BTS Resource Depletion Attack

BTS Resource Depletion Attack

 \rightarrow

BTS Resource Depletion Attack

Attack Alert!

 \rightarrow

Introduction O	Motivation 000	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Evaluati	ion w/ OTA	Attacks				

Our 5G Network Testbed at the Computer Science Lab of SRI International.

Introduction O	Motivation 000	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References O
Fvaluati	on w/ OTA	Attacks				

Demo video available at https://www.5gsec.com/post/5g-spector-demo

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	00	0000		O

Evaluation w/ Real-World Datasets

Name	Ref	UE	Time(s)	#Pkt.	#MF	#Sess.	В	Event
BT-1	[LPY ⁺ 16]	LG LS660	10,597	4,164	1,810	113	1	0
BT-2	[LPY ⁺ 16]	LG G3 VS985	514	3,803	173	15	1	0
BT-3	[LPY+16]	LG G3 VS985	489	3,766	158	15	1	0
BT-4	[LPY ⁺ 16]	Galaxy S5	764	2,996	154	13	1	0
BT-5	[LPY ⁺ 16]	LG G3 VS985	16,324	26,548	1,217	114	1	0
BT-6	[LPY+16]	Galaxy S5	1,459	2,803	97	13	1	0
BT-7	[LPY ⁺ 16]	Galaxy S5	2,053	4,794	448	27	1	0
BT-8	[LPY ⁺ 16]	Galaxy S5	6,387	2,839	1,435	113	1	0
AT-1	$[EAW^+]$	N/A	1	632	61	11	X	0
AT-2	$[EAW^+]$	N/A	1	482	53	8	X	0
AT-3	[EAW ⁺]	N/A	1	626	59	6	X	0

Table: Evaluation results using real-world benign cellular traffic.

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	00	0000		O

Evaluation w/ Real-World Datasets

Name	Ref	UE	Time(s)	#Pkt.	#MF	#Sess.	В	Event
BT-1	[LPY ⁺ 16]	LG LS660	10,597	4,164	1,810	113	1	0
BT-2	[LPY ⁺ 16]	LG G3 VS985	514	3,803	173	15	1	0
BT-3	[LPY+16]	LG G3 VS985	489	3,766	158	15	1	0
BT-4	[LPY ⁺ 16]	Galaxy S5	764	2,996	154	13	1	0
BT-5	[LPY ⁺ 16]	LG G3 VS985	16,324	26,548	1,217	114	1	0
BT-6	[LPY+16]	Galaxy S5	1,459	2,803	97	13	1	0
BT-7	[LPY ⁺ 16]	Galaxy S5	2,053	4,794	448	27	1	0
BT-8	[LPY ⁺ 16]	Galaxy S5	6,387	2,839	1,435	113	1	0
AT-1	$[EAW^+]$	N/A	1	632	61	11	X	0
AT-2	$[EAW^+]$	N/A	1	482	53	8	×	0
AT-3	[EAW+]	N/A	1	626	59	6	X	0

Table: Evaluation results using real-world benign cellular traffic.

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo	00	0000	00	O

Evaluation of Performance and Overhead

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo		0000	●○	O
Future	Work					

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	00	0000	●○	O

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	00	00	0000	●○	O

Future Work

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo		0000	○●	O
Thank	You					

Introduction	Motivation	O-RAN	5G-Spector	Evaluation	Future Work	References
O	000	oo		0000	○●	O
Thank	You					

5G-Spector Full paper (NDSS'24): https://web.cse.ohio-state.edu/~wen.423/papers/5G-Spector-NDSS24.pdf

5G-Spector Source Code: https://github.com/5GSEC/5G-Spector

5G-Spector Demo Video: https://www.5gsec.com/post/5g-spector-demo

My personal homepage: https://web.cse.ohio-state.edu/~wen.423/

Introduction O	Motivation 000	O-RAN oo	5G-Spector	Evaluation 0000	Future Work	References •
Referen	ices I					

- Mitziu Echeverria, Zeeshan Ahmed, Bincheng Wang, M Fareed Arif, Syed Rafiul Hussain, and Omar Chowdhury, Phoenix: Device-centric cellular network protocol monitoring using runtime verification.
- Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim, *Touching the untouchables: Dynamic security analysis of the lte control plane*, 2019 IEEE Symposium on Security and Privacy (SP), IEEE, 2019, pp. 1153–1168.
- Ulf Lindqvist and Phillip A Porras, Detecting computer and network misuse through the production-based expert system toolset (p-best), Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No. 99CB36344), IEEE, 1999, pp. 146–161.

O-ran alliance, https://www.o-ran.org/.

Haohuang Wen, Phillip Porras, Vinod Yegneswaran, and Zhiqiang Lin, A fine-grained telemetry stream for security services in 5g open radio access networks, Proceedings of the 1st International Workshop on Emerging Topics in Wireless, 2022, pp. 18–23.