
#NDSSSymposium2024

Presented by

Automatic Policy Synthesis and Enforcement
for Protecting Untrusted Deserialization

Quan Zhang, Yiwen Xu, Zijing Yin, Chijin Zhou, Yu Jiang
School of Software, Tsinghua University

Presenter Notes
Presentation Notes
1. Hello everyone, I am Quan Zhang from Tsinghua University.
Today, I will be presenting on Automatic policy Synthesis and Enforcement for Protecting Untrusted Deserialization. (00:13)

Presented by

#NDSSSymposium2024

Deserialization Attack

Object

0xaced0005…

Byte Stream Database

Network

File

Object

0xaced0005...

Byte Stream

2

Presenter Notes
Presentation Notes
Serialization and deserialization are essential mechanisms that transform objects into byte streams and back.
These mechanisms allow developers to seamlessly transmit objects across networks and store them in databases or files. (00:35)

Presented by

#NDSSSymposium2024

Deserialization Attack-Scenario

Attacker Applications

0xaced0005…

Byte Stream

Craft Serialize Attack

3

Gadget Chain

Presenter Notes
Presentation Notes
However, these mechanisms pose a significant risk called deserialization attack.
During attack, attackers can craft a gadget chain and serialize it into byte stream.
If the application deserialize the byte stream from attackers without defense, it can cause serious consequence like RCE. (1:00)

Presented by

#NDSSSymposium2024

Deserialization Attack-Gadget Chain

CommonCollections

4

Presenter Notes
Presentation Notes
The gadget chain is a carefully designed object with special structures.
When the application deserializes this object, it will invoke a series of methods as attackers intended.
For example, the gadget chain shown in figure guides the application to construct a Runtime object and invoke its exec method, resulting in RCE attack. (1:35)

Presented by

#NDSSSymposium2024

Deserialization Defense

Attacker ApplicationsGadget Chain

0xaced0005…

Byte Stream

Craft Serialize Attack

Deserialization
Policy

Validate

Block

5

Presenter Notes
Presentation Notes
The primary method to defend against deserialization attack is to validate the types of objects being deserialized according to a policy, thereby blocking the deserialization of gadget chains. (1:50)

Presented by

#NDSSSymposium2024

Deserialization Defense-Mechanism

XStream, 2014

6

Presenter Notes
Presentation Notes
To support such defense strategy, the community has already provided flexible mechanisms that allow developers to establish customized policies for their projects.
For instance, in 2014, XStream introduced a security framework designed to facilitate policy enforcement. (2:15)

Presented by

#NDSSSymposium2024

Deserialization Defense-Mechanism

XStream, 2014

JEP 290, 2016

7

Presenter Notes
Presentation Notes
In 2016, JEP 290 introduced ObjectInputFilter to secure deserialization with a customized policy. (2:30)

Presented by

#NDSSSymposium2024

Deserialization Defense-Mechanism

XStream, 2014

JEP 290, 2016

FastJson, 2016

8

Presenter Notes
Presentation Notes
Moreover, FastJson has integrated an internal blocklist since 2016.
These mechanisms enable developers to use blocklist and allowlist policies to mitigate deserialization attack.
Despite these measures, deserialization attacks remain a serious threat, because creating effective policies is still a difficult task. (2:55)

Presented by

#NDSSSymposium2024

Motivation Example

SafeObjectInputStream.java

Ofbiz

9

Presenter Notes
Presentation Notes
Let's consider a motivation example.
This code serves as a patch for a series of deserialization vulnerabilities from the Ofbiz project. (3:10)

Presented by

#NDSSSymposium2024

Motivation Example

SafeObjectInputStream.java

Ofbiz

Allowlist

Patch for
(1) CVE-2019-0189

10

Presenter Notes
Presentation Notes
From the beginning, Obfiz directly exposed an deserialization entry without any defense, leading to the first CVE.
To mitigate this vulnerability, the developers first customized an allowlist according to Ofbiz's requirements, as shown left.
Such an allowlist can effectively prevent malicious deserialization. (3:40)

Presented by

#NDSSSymposium2024

Motivation Example

SafeObjectInputStream.java

Ofbiz

(2) CVE-2021-26295

Patch for (1) CVE-2019-0189

11

Presenter Notes
Presentation Notes
However, for convenience, the Ofbiz developers permitted the deserialization of all JDK internal classes with names matching “java.*”.
Attackers soon discovered that this allowlist was not strict enough, allowing them to utilize java.rmi.server to perform RMI attack.
Therefore, the second CVE was exposed and addressed with a blocklist, which restricted classes with names containing "java.rmi.server.“ (4:20)

Presented by

#NDSSSymposium2024

Motivation Example

SafeObjectInputStream.java

Ofbiz

(3) CVE-2021-29200

(4) CVE-2021-30128

12

Patch for (2) CVE-2021-26295

Patch for (1) CVE-2019-0189

Presenter Notes
Presentation Notes
However, formulating a blocklist solely based on known gadget chains is not sufficiently secure.
Soon, attackers discovered other exploitable gadget chains, causing the third CVE.
After fixing these vulnerabilities, the policy was eventually strict enough.
Nevertheless, vulnerabilities can also stem from improper implementation of policy enforcement, as evidenced by the fourth CVE.
Specifically, the issue lay in the allowlist's regular expression matching, which can be bypassed by attackers to deserialize arbitrary classes. (5:05)

Presented by

#NDSSSymposium2024

Motivation Example

 CVE-2019-0189

 CVE-2021-26295

 CVE-2021-29200

 CVE-2021-30128

CVEs

 Policy Synthesis
 Demanding
 Error-Prone

 Policy Enforcement
 Various Libraries
 Incorrect Implementation

Challenges

13

Presenter Notes
Presentation Notes
Through the process of fixing these CVEs, we demonstrate two challenges of protecting java applications from deserialization attacks.
First, formulating allowlist policies requires significant effort and is prone to errors.
Second, enforcing these policies across various deserialization libraries introduces complexity and an increased risk of mistakes.
Therefore, we propose DeseriGuard, a tool designed to automatically synthesize and enforce allowlist policies for Java applications. (5:45）

Presented by

#NDSSSymposium2024

DeseriGuard-Overview
14

Presenter Notes
Presentation Notes
DeseriGuard contains two componts, which are responsible for policy synthesis and policy enforcement, respectively.
During policy synthesis, DeseriGuard constructs a semantic-aware property tree based on application’s source code and synthesizes the policy.
Then, it performs runtime instrumentation on application’s bytecode with Java agent to enforce the policy. (6:20）

Presented by

#NDSSSymposium2024

Policy Synthesis-Semantic-Aware Property Tree (SAPT)

SAPT

 Nodes
 Java Classes

 Edges
 Property Edges
 Inference Edges

15

Presenter Notes
Presentation Notes
During the policy synthesis, DeseriGuard first builds a SAPT for each deserialization entry based on application’s source code.
Nodes of SAPT are Java classes, which are connected with preparty edges and inference edges.
SAPT captures all potential structure of the deserialized object, from which we could find all necessary classes for the deserialization entry. （6:55）

Presented by

#NDSSSymposium2024

Policy Synthesis-Root Node Identification

Semantic-Aware Property Tree (SAPT)

16

Presenter Notes
Presentation Notes
The construction of a SAPT starts with identifying its root node, which is the class returned by the deserialization entry.
As the source code shows, the readObject method returns an object class.
Hence, the root node n0 of SAPT is Object class.
Please note that, for each desrializtion entry, DeseriGuard will builds a SAPT and formulate a policy. (7:25)

Presented by

#NDSSSymposium2024

Policy Synthesis-Root Node Identification

Semantic-Aware Property Tree (SAPT)

Entries are Enumerable
 ObjectInputStream

 readObject
 XStream

 fromXML
 …

17

Presenter Notes
Presentation Notes
Since the deserialization entry methods of libraries are limited, DeseriGuard can identify the root nodes by locating these methods’ invocations. (7:40)

Presented by

#NDSSSymposium2024

Policy Synthesis-Root Node Identification

Semantic-Aware Property Tree (SAPT)General Classes

18

Presenter Notes
Presentation Notes
The root node n0 is of Object class, which is a common ancestor of many exploitable classes on gadget chains.
Classes like Object, Serializable, and Comparable are considered as general classes.
Including these general classes in the allowlist will also permit the deserialization of many exploitable classes.
Therefore, DeseriGuard analyzes the data flow to identify the specific classes that these general classes will be cast into.（8:20）

Presented by

#NDSSSymposium2024

Policy Synthesis-Root Node Identification

Semantic-Aware Property Tree (SAPT)

19

Presenter Notes
Presentation Notes
For instance, DeseriGuard traces the data flow from the deserialization entry to determine the object's usage.
It discovers that the object is cast to either the Profile or Session class for application’s functionality.
Thus, the nodes of Profile and Session are connected after the node n0. (8:45)

Presented by

#NDSSSymposium2024

Policy Synthesis-Property Edges Connection

Semantic-Aware Property Tree (SAPT)

20

Presenter Notes
Presentation Notes
Once a class is added to SAPT, DeseriGuard first analyzes its properties and constructs property edges.
The property edges connects a node to the classes of its properties.
In detail, the Session class has four properties of different classes, and thus four nodes, labeld from n3 to n6, are connected to the node of Session.
Subsequently, DeseriGuard recursively analyzes these four new nodes. (9:25)

Presented by

#NDSSSymposium2024

Semantic-Aware Property Tree (SAPT)

Terminate

Policy Synthesis-Property Edges Connection
21

 Primitive Types
 Int
 Long
 Boolean
 …

 String

Basic Types

Presenter Notes
Presentation Notes
For the node n5 of the Time class, it has no child classes and its properties consist only of basic types.
Thus, DeseriGuard terminate the analysis on this subtree.
These basic types include the String class and Java’s primitive types. (9:40)

Presented by

#NDSSSymposium2024

Semantic-Aware Property Tree (SAPT)

Policy Synthesis-Inference Edges Solvement
22

Presenter Notes
Presentation Notes
Besides property edges, DeseriGuard needs to construct inference edges to record the complex inheritance relationships among classes.
For example, the User classes has two subclasses, Admin and Guest.
And these two classes are connected to the node User with inference edges. （10:05)

Presented by

#NDSSSymposium2024

Semantic-Aware Property Tree (SAPT)

Policy Synthesis-Inference Edges Solvement
23

Presenter Notes
Presentation Notes
However, for general classes, we shouldn't automatically add all their subclasses as child nodes.
Instead, we conduct a data flow analysis to more precisely determine which classes the properties will be cast to. （10:25）

Presented by

#NDSSSymposium2024

Semantic-Aware Property Tree (SAPT)

Policy Synthesis-Inference Edges Solvement
24

Presenter Notes
Presentation Notes
After establishing both property and inference edges for all nodes on SAPT, DeseriGuard completes the construction of SAPT.
Then, we can create the allowlist by including all classes on SAPT. (10:45)

Presented by

#NDSSSymposium2024

Policy Enforcement

 Various Deserialization Libraries
 ObjectInputStream
 XStream
 FastJson
 …

Automatic Policy Enforcement with
Java Agent Instrumentation

 Auditor  Activator

25

Presenter Notes
Presentation Notes
With the policy, DeseriGuard then automatically enforces it on different deserialization libraries.
Specifically, by using Java agent, DeseriGuard performs runtime instrumentation to insert activators and auditors into the application's bytecode. (11:05)

Presented by

#NDSSSymposium2024

Policy Enforcement-Activator
26

Presenter Notes
Presentation Notes
An activator is instrumented before and after each deserialization entry to specify corresponding policy for that entry.
Please note that DeseriGuard chooses to protect all deserialization entries of a project, because it is challenging to determine whether a deserialization entry is exposed and exploitable. (11:30)

Presented by

#NDSSSymposium2024

Policy Enforcement-Auditor
27

Presenter Notes
Presentation Notes
As for the auditor, is should validate the object type after the deserialization libraries identify the class using their resolving methods.
Since distinct libraires have very different resolving methods, DeseriGuards needs to automatically locating the invocation position of resolving method.
It first performs a dataflow analysis to locate the potential invocation positions.
Specifically, it detects the dataflow pattern that goes from a byte stream to a Class object, and then to the constructed object. (12:15)

Presented by

#NDSSSymposium2024

Policy Enforcement-Auditor
28

Presenter Notes
Presentation Notes
Then, DeseriGuard performs a runtime validation to find the correct position from these candidates.
With activator and auditor instrumented at the proper positions, DeseriGuard can validate each deserialization operation in real-time. (12:35)

Presented by

#NDSSSymposium2024

Evaluation-Setting Up

 Real World Vulnerabilities

 12 vulnerabilities

 Developer-Designed Policies

 109 policies from 40 projects

 collected from GitHub with more than 100 stars

29

Presenter Notes
Presentation Notes
We evaluate DeseriGurd from two aspects
First, we evaluate DeseriGuard on 12 critical real world vulnerabilities.
Then, we compare DeseriGuard’s policy with 109 developer designed policies.
These developer designed policies are collected from 40 projects, which all gain more than 100 stars on GitHub. (13:05)

Presented by

#NDSSSymposium2024

Evaluation-Real World Vulnerabilities

 1.11M LoC  20.68K Classes  100% Defense Rate  No False Alarm

30

Presenter Notes
Presentation Notes
To mitigate real-world vulnerabilities, DeseriGuard analyzes projects that on average comprise 1.11 million lines of code.
These projects include around 20.68 thousand classes, among which are numerous exploitable gadget chains, presenting a significant challenge for analysis.
On these projects, DeseriGuard achieves a 100% defense rate without triggering any false alarms. (13:45)

Presented by

#NDSSSymposium2024

Evaluation-Real World Vulnerabilities

 1~623 rules  1~1342 permitted classes

31

Presenter Notes
Presentation Notes
According to the functionality of different vulnerable deserialization entries, DeseriGuard synthesizes policies with one to 623 rules, permitting the deserialization of one to 1342 classes.
The most complex policy is synthesized for the obfiz, where developers deserialize a map containing diverse objects.
When compared to the total number of classes across projects, DeseriGuard's policies permit, at most, only 0.0481% of the total classes. (14:35)

Presented by

#NDSSSymposium2024

Evaluation-Developer-Designed Policies
32

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Presenter Notes
Presentation Notes
Next, we depict the compression rate of policies from DeseriGuard compared to those designed by developers.
The compression rate indicates the proportion of permitted classes to the total number of classes.
The medium compression rate of DeseriGuard’s policies stands at 0.04%, while that of developer-designed polices is 19.02%.
It demonstrates that DeseriGuard offers a more effective defense by enforcing a stricter policy. (15:20)

Presented by

#NDSSSymposium2024

Evaluation-Developer-Designed Policies

 99.12% fewer classes

33

 1~85 additional classes

Presenter Notes
Presentation Notes
When observing the difference between DeseriGuard’s policies and developer’s policies, we find that DeseriGuard permits 99.12% fewer classes.
However, as shown by the orange bar, DeseriGuard may allow one to 85 additional classes that are not included by developers’ policies.
It is because that DeseriGuard should overapproximate all necessary classes, inadvertently including some unnecessary classes.
Nonetheless, attackers are unlikely to find exploitable gadget chains from these additional classes. (16:00)

Presented by

#NDSSSymposium2024

Conclusion
DeseriGuard automatically synthesizes allowlist policies for

Java applications
 Manually formulating is challenging

DeseriGuard automatically enforces policies for various
deserialization libraries
 Enforcement position location is tough

DeseriGuard mitigates 12 vulnerabilities and permits 99.12%
fewer classes on 109 deserialization entries

Thank you for the listening! quanzh98@gmail.com

Thank Deng Feng Fund.

34

Presenter Notes
Presentation Notes
Thank you for the listening. Feel free to ask any questions. (16:10)

Presented by

#NDSSSymposium2024

Evaluation-SOTA Approaches

Gadget Chain Mining

35

Presenter Notes
Presentation Notes
We also utilize gadget chain mining tools, GadgetInspector, to explore new gadget chains for evaluating DeseriGuard.
As the table shows, DeseriGuard resists all mined gadget chains.
In addition, all gadget chains from famous gadget chain construction tool, Yoserial, cannot bypass DeseriGuard.

Presented by

#NDSSSymposium2024

Evaluation-SOTA Approaches

Policy Learning

36

Presenter Notes
Presentation Notes
We also compared DeseriGuard with Trusted Execution Path, a advanced policy learning tool that synthesize policies from benign deserialization workloads.
Both two approaches achieve 100% defense rate.
However, since the collected deserialization workload cannot cover all situations of deserialization, Trusted Execution Path causes false alarm on 8 of 12 cases.
In contrast, DeseriGuard requires no deserialization workload, making it a more practical approach for defense.

Presented by

#NDSSSymposium2024

Evaluation-Real World Vulnerabilities

Overhead

37

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

