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❖ Reduce utility of trained 
model (untargeted)

❖ Inject backdoor into the
final model (targeted)

❖ Attack must be stealthy

Poisoning Adversary Model & Assumptions

❖ Attack is performed 
during training

❖ Malicious clients 
submit poisoned model updates❖ Fully or partially 

compromised clients 

❖ Typically, adversary has no 
access to benign models

❖ Majority (51%) of clients 
are benign 
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❖ Aggregated model is backdoor free, if all poisoned models 
are detected

Advantages of Detection Approaches

❖ Attackers can be identified

❖ Allows for permanently banning attackers

❖ Utility of model not reduced, if no benign model is excluded
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Differential Privacy

[Shen et al., ACSAC 2016, Blanchard et al., NIPS 2017]

[Fung et al., RAID 2020 , Andreina et al., ICDCS, 2021]

[Rieger et al., NDSS 2022, Yin et al., ICML 2018]

[McMahan et al., ICLR 2018]

[Nasari et al., NDSS 2022]

[Bagdasaryan et al., AISTATS 2020]

Filtering

Reduce the benign 
accuracy of the model.

Rely on client‘s data 
distribution.

Operate directly on 
client‘s weights.

Assumptions about 
attack strategy.

Limitations of Defenses Operating on Plain Parameters

Goal: Detangle mechanisms from assumptions about 
attacks/data while preserving main task accuracy.
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FreqFed results

❖ Frequency transform is detached from the overall 
weights of the clients

❖ Malicious clients cannot easily optimize the 
model in time domain and keep the backdoor

❖ Low-Frequency components allow differentiation 
between benign and poisoned models



Injection Strategy Dataset
No Defense Frequency Defense

MA MA TPR TNR

Label Flipping CIFAR-10 35.8 81.9 100.0 100.0

Random Update CIFAR-10 31.2 81.7 100.0 100.0

Optimized Attack (PGD)

CIFAR-10 10.0 77.2 100.0 100.0

MNIST 44.5 95.8 100.0 100.0

E-MNIST 4.9 81.4 100.0 100.0

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝑇𝐹𝑃

Evaluation Results – Untargeted Attacks



Injection 
Strategy

Backdoor 
type

No Defense Frequency Defense

BA MA BA MA TPR TNR

Single 
Backdoor

Pixel-
pattern

100.0 85.5 0.0 90.1 100.0 100.0

Semantic 100.0 86.8 0.0 92.2 100.0 100.0

Edge-Case 73.4 84.9 4.1 80.1 100.0 100.0

Multiple 
Backdoor

Pixel-
pattern

97.6 89.6 0.0 86.1 100.0 100.0

Distributed 
Backdoor

Pixel-
pattern

93.8 57.4 0.4 76.4 100.0 100.0

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝑇𝐹𝑃

Image domain (CIFAR-10)

Dataset Model
No Defense Frequency Defense

BA MA BA MA TPR TNR

PROTEINS
GCN 65.3 75.3 0.0 78.6 100.0 100.0

MoNet 96.2 76.8 0.0 82.0 100.0 100.0

NCI1
GCN 97.3 76.9 0.0 94.1 100.0 100.0

MoNet 100.0 78.8 0.0 83.2 100.0 100.0

DD
GCN 100.0 66.4 0.0 73.1 100.0 100.0

MoNet 95.8 72.2 0.0 71.4 100.0 100.0

Graph domain (GNNs)

Dataset Model
No Defense Frequency Defense

BA MA BA MA TPR TNR

Reddit LSTM 100.0 22.5 0.0 22.7 100.0 100.0

Text domain

Dataset Model
No Defense Frequency Defense

BA MA BA MA TPR TNR

TIMIT LSTM 84.7 92.9 0.0 95.3 100.0 100.0

Audio domain

Evaluation Results – Targeted Attacks
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Conclusion – FreqFed 

❖ Previous existing defenses focus either on targeted or untargeted attacks

❖ Non-IID scenarios remain challenging for them

❖ Training prioritizes low frequencies and progress to high frequencies

❖ Employ frequency transformation to analyze embeddings of model

❖ Leverage automatic clustering approach based on HDBSCAN

❖ Mitigates targeted and untargeted attacks

❖ Effective even in non-IID scenarios

❖ Frequency transformation causes unprecise adaptions (loss constrain etc.)





Approach BA MA

No Attack 0.0% 86.6%

No Defense 100% 56.0%

Differential 
Privacy

0.0% 75.5%

AFA 0.0% 80.0%

Median 0.0% 45.1%

FoolsGold 0.0% 77.6%

Krum 100.0% 23.9%

Auror 0.0% 30.1%

FreqFed 0.0% 86.5%

Evaluation Results – Comparison Against SotA

BA: Backdoor Accuracy
MA: Main Task Accuracy 
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