FreqFed: Frequency Analysis for Poisoning Detection in Federated Learning

Hossein Fereidooni, Alessandro Pegoraro, Phillip Rieger, Alexandra Dmitrienko and Ahmad-Reza Sadeghi,

NDSS 2024

 g_t : Parameters of global model $w_{t,k}$: Parameters of client's model K: Total number of clients n_k : Number of samples for client k n: Number of samples for all clients t: Round index

 $w_{t,k}$: Parameters of client's model K: Total number of clients n_k : Number of samples for client k n: Number of samples for all clients t: Round index

 g_t : Parameters of global model $w_{t,k}$: Parameters of client's model K: Total number of clients

 n_k : Number of samples for client k n: Number of samples for all clients t: Round index

Backdoor Attacks in Federated Learning

Trigger: Pixel-pattern
[Bagdasaryan et al. AISTATS 2020]

Trigger: Pixel-pattern
[Bagdasaryan et al. AISTATS 2020]

Trigger: Pixel-pattern [Bagdasaryan et al. AISTATS 2020]

Trigger: Pixel-pattern [Bagdasaryan et al. AISTATS 2020]

Poisoning Adversary Model & Assumptions

Reduce utility of trained model (untargeted)

- Inject backdoor into the final model (targeted)
- ✤ Attack must be stealthy

Poisoning Adversary Model & Assumptions

Reduce utility of trained model (untargeted)

- Inject backdoor into the final model (targeted)
- ✤ Attack must be stealthy

 Attack is performed during training

Malicious clients
submit poisoned model updates

Poisoning Adversary Model & Assumptions

Reduce utility of trained model (untargeted)

- Inject backdoor into the final model (targeted)
- ✤ Attack must be stealthy
- Fully or partially compromised clients
- Typically, adversary has no access to benign models
- Majority (51%) of clients are benign

 Attack is performed during training

Malicious clients
submit poisoned model updates

Advantages of Detection Approaches

 Aggregated model is backdoor free, if all poisoned models are detected

Advantages of Detection Approaches

 Aggregated model is backdoor free, if all poisoned models are detected

- ✤ Attackers can be identified
- Allows for permanently banning attackers

Advantages of Detection Approaches

 Aggregated model is backdoor free, if all poisoned models are detected

- ✤ Attackers can be identified
- Allows for permanently banning attackers

Utility of model not reduced, if no benign model is excluded

Filtering

[Shen et al., ACSAC 2016, Blanchard et al., NIPS 2017]

Filtering Operate directly on client's weights. Rely on client's data distribution.

[Shen et al., ACSAC 2016, Blanchard et al., NIPS 2017] [Rieger et al., NDSS 2022, Yin et al., ICML 2018]

Filtering Operate directly on client's weights. Rely on client's data distribution. Assumptions about attack strategy.

[Shen et al., ACSAC 2016, Blanchard et al., NIPS 2017] [Rieger et al., NDSS 2022, Yin et al., ICML 2018] [Fung et al., RAID 2020, Andreina et al., ICDCS, 2021]

[Shen et al., ACSAC 2016, Blanchard et al., NIPS 2017] [Rieger et al., NDSS 2022, Yin et al., ICML 2018] [Fung et al., RAID 2020, Andreina et al., ICDCS, 2021]

- Early training focuses is on adapting low frequencies
 - Low frequencies represent main behavior [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]
 - Most of model's capabilities (energy) encoded in low-frequencies
 [Wang et al. IEEE PAMI 2018], [Xu et al. IEEE CVF 2020]
- High-frequencies change mostly in late epochs (after convergence)
 [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]

- Early training focuses is on adapting low frequencies
 - Low frequencies represent main behavior [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]
 - Most of model's capabilities (energy) encoded in low-frequencies
 [Wang et al. IEEE PAMI 2018], [Xu et al. IEEE CVF 2020]
- High-frequencies change mostly in late epochs (after convergence)
 [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]

- Early training focuses is on adapting low frequencies
 - Low frequencies represent main behavior [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]
 - Most of model's capabilities (energy) encoded in low-frequencies
 [Wang et al. IEEE PAMI 2018], [Xu et al. IEEE CVF 2020]
- High-frequencies change mostly in late epochs (after convergence)
 [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]

- Early training focuses is on adapting low frequencies
 - Low frequencies represent main behavior [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]
 - Most of model's capabilities (energy) encoded in low-frequencies
 [Wang et al. IEEE PAMI 2018], [Xu et al. IEEE CVF 2020]
- High-frequencies change mostly in late epochs (after convergence)
 [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]

- Early training focuses is on adapting low frequencies
 - Low frequencies represent main behavior [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]
 - Most of model's capabilities (energy) encoded in low-frequencies
 [Wang et al. IEEE PAMI 2018], [Xu et al. IEEE CVF 2020]
- High-frequencies change mostly in late epochs (after convergence)
 [Rahamanet al. ICML 2019], [Xu et al. ICONIP 2019]

Global Model G_t

1) DCT Frequency ${\cal F}$

1

FreqFed: High-Level IDea

1) DCT Frequency ${\cal F}$

2) Low-frequency components f

3) Clustering and Filtering

FreqFed results

- Frequency transform is detached from the overall weights of the clients
- Malicious clients cannot easily optimize the model in time domain and keep the backdoor
- Low-Frequency components allow differentiation between benign and poisoned models

Evaluation Results – Untargeted Attacks

Injection Strategy	Dataset	No Defense	Frequency Defense					
		МА	МА	TPR	TNR			
Label Flipping	CIFAR-10	35.8	81.9	100.0	100.0			
Random Update	CIFAR-10	31.2	81.7	100.0	100.0			
	CIFAR-10	10.0	77.2	100.0	100.0			
Optimized Attack (PGD)	MNIST	44.5	95.8	100.0	100.0			
	E-MNIST	4.9	81.4	100.0	100.0			

$$TPR = \frac{TP}{TP + FN}$$
 $TNR = \frac{TN}{TN + TFP}$

Evaluation Results – Targeted Attacks

Image domain (CIFAR-10)

Injection	Backdoor	No De	fense	Frequency Defense					
Strategy	type	BA	MA	BA	MA	TPR	TNR		
Single	Pixel- pattern	100.0	85.5	0.0	90.1	100.0	100.0		
Backdoor	Semantic	100.0	86.8	0.0	92.2	100.0	100.0		
	Edge-Case	73.4	84.9	4.1	80.1	100.0	100.0		
Multiple Backdoor	Pixel- pattern	97.6	89.6	0.0	86.1	100.0	100.0		
Distributed Backdoor	Pixel- pattern	93.8	57.4	0.4	76.4	100.0	100.0		

Graph domain (GNNs)

Dataset	Model	No De	fense	Frequency Defense					
	Model	BA	MA	BA	MA	TPR	TNR		
PROTEINS	GCN	65.3	75.3	0.0	78.6	100.0	100.0		
PROTEINS	MoNet	96.2	76.8	0.0	82.0	100.0	100.0		
NCI1	GCN	97.3	76.9	0.0	94.1	100.0	100.0		
	MoNet	100.0	78.8	0.0	83.2	100.0	100.0		
DD	GCN	100.0	66.4	0.0	73.1	100.0	100.0		
	MoNet	95.8	72.2	0.0	71.4	100.0	100.0		

Audio domain

TNR

100.0

Text domain

Dataset	Model	No De	efense	F	requenc	y Defens	se		Dataset M		N Dataset Model			No Defense		Frequency Defense			
		BA	MA	BA	MA	TPR	TNR				BA	MA	BA	MA	TPR				
Reddit	LSTM	100.0	22.5	0.0	22.7	100.0	100.0		ΤΙΜΙΤ	LSTM	84.7	92.9	0.0	95.3	100.0				

Conclusion – FreqFed

- Previous existing defenses focus either on targeted or untargeted attacks
- Non-IID scenarios remain challenging for them

Conclusion – FreqFed

- Previous existing defenses focus either on targeted or untargeted attacks
- ✤ Non-IID scenarios remain challenging for them

- Training prioritizes low frequencies and progress to high frequencies
- Employ frequency transformation to analyze embeddings of model
- Leverage automatic clustering approach based on HDBSCAN

Conclusion – FreqFed

- Previous existing defenses focus either on targeted or untargeted attacks
- Non-IID scenarios remain challenging for them

- Training prioritizes low frequencies and progress to high frequencies
- Employ frequency transformation to analyze embeddings of model
- Leverage automatic clustering approach based on HDBSCAN

- Mitigates targeted and untargeted attacks
- Effective even in non-IID scenarios
- Frequency transformation causes unprecise adaptions (loss constrain etc.)

Evaluation Results – Comparison Against SotA

Approach	BA	MA
No Attack	0.0%	86.6%
No Defense	100%	56.0%
Differential Privacy	0.0%	75.5%
AFA	0.0%	80.0%
Median	0.0%	45.1%
FoolsGold	0.0%	77.6%
Krum	100.0%	23.9%
Auror	0.0%	30.1%
FreqFed	0.0%	86.5%

BA: Backdoor Accuracy MA: Main Task Accuracy