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Why we still focus on PoW?

m In 585 papers presented at top CS conferences from 2020 to 2022

> 41 papers focus on PoW:
e - Formal Analysis of Nakamoto Consensus (10)
e - New Design: DAG-based Protocols (7)
e - New Design: non-DAG-based Protocols (6)
e - Mining Attacks and Ecosystem Analysis (18)

®To sum up:

» Security Analysis
e PoW: more secure than previously believed
e PoS: more attack vectors discovered

> 23 papers involve PoS:
e - Analysis (11)
e - New Design (12)

> New PoS Designs: not sure we can ever achieve PoW's security

> PoS ecosystems: lack of studies raises concerns




1. NC & DAG

=) Nakamoto Consensus and its limitation

m) The solution: DAG-based blockchain

= Does DAG solve the problem?

=) The phenomena in DAG blockchain
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¢ the longest fork means the most mining power .
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m Security-Performance Tradeoff
> security of NC is rooted in

“block generation interval >> the time for propagation”

e the smaller the gap, the worse the security
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m Security-Performance Tradeoff
> security of NC is rooted in

“block generation interval >> the time for propagation”

e the smaller the gap, the worse the security

> however!

> higher throughput requires larger block and
shorter block interval, which reduces the security

Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in Bitcoin,” in Financial Cryptography and Data Security - 19th
International Conference, FC 2015, ser. Lecture Notes in Computer
Science, vol. 8975. Springer, 2015, pp. 507-527.

J. A. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, ser. Lecture
Notes in Computer Science, vol. 9057. Springer, 2015, pp. 281-310.

——, “The bitcoin backbone protocol with chains of variable difficulty,”
in Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, ser. Lecture Notes in Computer Science, vol.
10401.  Springer, 2017, pp. 291-323.

P. Gazi, A. Kiayias, and A. Russell, “Tight consistency bounds for
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Computer and Communications Security, ser. CCS *20. ACM, 2020,
p. 819-838.

A

propagation delay'

A ! A

throughpu't

block size

® NC has to maintain a poor performance.
> 7 TPS

block interval

v

R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, ser. Lecture Notes in Computer
Science, vol. 10211, 2017, pp. 643-673.

A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and
O. Zeitouni, “Everything is a race and Nakamoto always wins,” in CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2020, pp. 859-878.

L. Kiffer, R. Rajaraman, and A. Shelat, “A better method to analyze
blockchain consistency,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, pp.
729-744.

A

fork rate I- security

\Z



DAG-based Blockchain

® Structure: Chain — Directed Acyclic Graph




DAG-based Blockchain

® Structure: Chain — Directed Acyclic Graph
> multiple predecessors
> multiple concurrent blocks

m A large number of valid blocks result in a high throughput (thousands TPS)



DAG-based Blockchain

® Structure: Chain — Directed Acyclic Graph
> multiple predecessors
> multiple concurrent blocks

m A large number of valid blocks result in a high throughput (thousands TPS)

B Security 1s a concern for early protocols

> weak security guarantees

> partial security analyses



DAG-based Blockchain

® Structure: Chain — Directed Acyclic Graph
> multiple predecessors
> multiple concurrent blocks

m A large number of valid blocks result in a high throughput (thousands TPS)

B Security 1s a concern for early protocols

> weak security guarantees State-of-the-art:

Prism (CCS’ 2019), OHIE (S&P 2020)

> partial security analyses
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m Structured DAG blockchain based on NC
> Prism [CCS’19] (three types of blocks)

e tx blocks, proposer blocks, voter blocks

[\S_E) Transaction block
Voter block
Proposer block

L Leader blodk

T Parent Link

-

- Reference Link

Chain 1 Chain 2

V. K. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath,
“Prism: Deconstructing the blockchain to approach physical limits,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019. ACM, 2019, pp. 585-602.



Prism & OHIE

m Structured DAG blockchain based on NC
> Prism [CCS’19] (three types of blocks)

e tx blocks, proposer blocks, voter blocks

> OHIE [S&P’20] (multiple parallel chains)

e m parallel NC chains, m times throughput
e security comparable to NC

[\S_ED Transaction block
Voter block

Y-._|
. Proposer block
3 K-
_':, L Leader block
P T Parent Link
a “ Reference Link
L @L Chain 1 Chain 2 Chain m
& Td)
V. K. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath,
“Prism: Deconstructing the blockchain to approach physical limits,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019. ACM, 2019, pp. 585-602.
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H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: blockchain scaling
made simple,” in 2020 IEEE Symposium on Security and Privacy, SP

2020. IEEE, 2020, pp. 90-105.
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> Both designs prove the same security properties as NC

m Security-Performance tradeoff really has been broken? i
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Problems of analyses for DAG-based blockchain

m Assumption of Decoupling
> some priority blocks are small enough and enjoy a priority
propagation policy
e delay 1s always very small
e always accept immediately

> Security will be guaranteed if these priority blocks can always be
“synchronized quickly”

> But 1t’s not easy in a high-throughput DAG-based blockchain system
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® In DAG-based blockchain system

> many blocks generated parallelly

> network loads many blocks—block propagation
delay vary and increases
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Block Jam

m [f the total number of blocks propagated over a period
of time exceeds the network's processing capacity,
some blocks will have more propagation delay

there are 3 within 2s

/ 1. Is

wait

H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: blockchain scaling

B In DAG—based blOCkChain System made simple,” in 2020 IEEE Symposium on Security and Privacy, SP

2020. IEEE, 2020, pp. 90-105.

> many blocks generated parallelly 5 , — ,
» network loads many blocks — block propagation & ¢ Z6 2
delay varies and increases g 47 // 8 4 k@://
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[ate Predecessor

m [f a miner receives a block but does not receive all

e ————

its predecessors, the miner cannot accept the block //‘/:i::’—‘—‘—‘—iii\ TR
_ ™\ ™ N
_K — | - 1 . -¢ >
_ received but  accepted
® The more pointers a block has, the more late not accepted

predecessors 1t will have.

R. Zhang, D. Zhang, Q. Wang, S. Wu, J. Xie, and B. Preneel, “NC-Max:
Breaking the security-performance tradeoff in Nakamoto consensus,”
The Network and Distributed System Security (NDSS) Symposium, 2022.
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2. New Model

=) Why we need a new model?

m) (Characteristics of CBM

=) Apply CBM to DAG-based blockchain
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Why we need a new model ?

m For DAG-based blockchain

> multiple types of blocks
> overlaps in block propagation

delay 1s complex and diverse

Delay of proposer blocks

2500 1 . ‘ —
2000 | Bl propagation delay
=~ Bl average actual delay —
- UDBM £1soo - [__Jmaximum actual delay
. >
> a uniform upper bound of delay on all blocks = 1000
o
> adversary strategy: delay all receivers to the bound 00T H
dvers Iy's gy y _-H miil| = -I -l
20 40 60 80 100
Bandwidth utilization (%)
. . . *actual delay is the interval between the block’s generation
N We deploy Prlsm Wlth SlmBIOCk and the arrival of its latest predecessor at a certain node

> a maximum delay bound would overestimate the
security requirement
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Congestible Blockchain Model

m CBM

> time assumption
e the upper bound may be different
e specify delay of each node

> block processing: distinguish the status

e received, , confirmed, orphaned

e actual delay = propagation delay +

> same adversary & mining & security property

Miners
deliver new block
\ 4
Environment
N
deliver the block and deliver the delay of
its upper bound of block for each node
delay v
Adversary
e - o —
- —mm - T T =< ~~_ T~ ~
i/ i ‘ >~ N ~ N ~ ~
<— \
< - N
4
propagation delay

actual delay
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Apply CBM to DAG-based blockchain

m Defining late-predecessors (LP)
> B*1s late if B* «— B™ , but B" 1s received first
> interval between receiving B* and B™ is lag time
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Apply CBM to DAG-based blockchain

m Defining late-predecessors (LP) s

—_—

o |
> B*1s late if B* «— B™, but B"1s received first SN

~

—— —
_——
—_—

> interval between receiving B* and B™ is lag time

® Bounding the Actual Delay
> max actual delay =

propagation delay (itself) + max lag time (predecessors)
< max propagation delay (predecessors)

N N
!
received time

accepted time
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Apply CBM to DAG-based blockchain

late
® Defining late-predecessors (LP) /;;:—:—:—I—:—‘—‘—‘:»—\_%\ l
. . . . //i’ \\\\\ \\\\\\\
> B*1s late if B*« B*, but B"1s received first PR\ m =
> interval between receiving B* and B™ is lag time received gme ‘

accepted time

® Bounding the Actual Delay
> max actual delay =
propagation delay (itself) + max lag time (predecessors)

< max propagation delay (predecessors) | B*is not late | Bis late
V

WK Wi . R Wiy Ry
FHRVEED ST S ST .

> Max actual delay cannot be reached for all nodes

® Only the maximum actual delay is insufficient
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3. LP Attack

T—

m) Adversary’s capability and target

m) Simple case: one predecessor

=) General case: Concrete attack strategy

=) Results and security analysis

15
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Defining the attacker’s utility

m Consider two groups of blocks:

I potential late predecessor B

> large and many, such as transaction blocks

6’;;1&96 > 6T-IT_1 ax

affected block B*

> have small delays, such as proposer blocks

---------
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Defining the attacker’s utility

m Adversary’s target

» average actual delay of BY
¢ the average delay of a block accepted by every node
¢ reflects the wasted computing power

B*1s not late
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Defining the attacker’s utility

m Adversary’s target

» average actual delay of BY
¢ the average delay of a block accepted by every node
¢ reflects the wasted computing power

® Since block mining process is random and unpredictable,
adversary maximizes the expectation.

B*1s not late

L
Wy Ry !
W7 'Ry ‘

|B *1s late
Rz Rz Ry
Lval v Al v
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®m Maximize the “damage” of one potential LP

| ‘given B* (mined earlier) and B !

» the probability of B* « B
» the lag time of B* and B™ for each node

m Optimal strategy:

» some nodes (p%) receive B* before B* is mined

> other nodes receive B* at the maximum propagation delay
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Propagating one potential Late-predecessor

®m Maximize the “damage” of one potential LP .
proportion of

glven B* (mined earlier) and B* ! nodes receiving

> the probability of B* « B~ A B
> the lag time of B* and B™ for each node
pY% |7 IiEsememeenas
m Optimal strategy: P
R i

» some nodes (p%) receive B* before B* is mined T

+ .
> other nodes receive B* at the maximum propagation delay B™ is mined



Consider a sequence of potential B”

> maximize the probability of LP appearing: each node has
a potential B*

19



Consider a sequence of potential B”

> maximize the probability of LP appearing: each node has
a potential B*

time

% potential LP

19



Consider a sequence of potential B”

> maximize the probability of LP appearing: each node has
a potential B*

“a arrival time

x late predecessor

potential LP

19



Consider a sequence of potential B”

> maximize the probability of LP appearing: each node has

a potential B*
> increase lag time: shorten the interval to obtain B*
> 1ncrease number of affected nodes: reduce group size

:|> trade-off

“a arrival time

x late predecessor

potential LP
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Consider a sequence of potential B”

> maximize the probability of LP appearing: each node has
a potential B*

> increase lag time: shorten the interval to obtain B* trade-off
> 1ncrease number of affected nodes: reduce group size

predecessor< successor

“a arrival time

x late predecessor

@ affected block
. potential LP

19



Attack Results

m Optimal s
TABLE I: The optimal s that maximizes E[A™], where k is the
expected number of in-propagation blocks in B* in a round.

E (0.5.2.53) [2.549.81) [9.82,18.64) [18.65,20]
3 2 3 4 5)

m Computing the result

EA =65 4+ (1—1/8)(k—s(1—w))f
— \\
k= 1" (6fax — Orhax) w = (1 — f*/s5)%max=0max




Attack Results

m Optimal s
TABLE I: The optimal s that maximizes E[A™], where £ is the
expected number of in-propagation blocks in 5* in a round.

E (0.52.53) [2.549.81) [9.82,18.64) [18.65,20]
S 2 3 4 5

m Computing the result

EA"] = 0+ (1= 1/5)(k — s(1 —w)) f*
— T~
k — f* ) (5;;1&}( _ 51_1|_1a,x) W = (1 T f*/s)é;::lax__éimx

> longer propagation delay of LP

, , |D longer actual delays
> higher generation rate of LP
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Security Properties in the Presence of an LP Attacker

® As nodes have different delays for the same late predecessor,
we cannot replace the delay 1n existing UDBM analyses.

® Chain growth

> using average actual delay to compute discounted
computing power

® Chain quality
> comparing the discounted chain growth with the
adversary’s computing power

® Common prefix

> probability of splitting nodes to work on two distinct
chains with different block delays
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Security Properties in the Presence of an LP Attacker

® As nodes have different delays for the same late predecessor,

we cannot replace the delay 1n existing UDBM analyses.

® Chain growth

> using average actual delay to compute discounted
computing power

® Chain quality
> comparing the discounted chain growth with the
adversary’s computing power

® Common prefix

> probability of splitting nodes to work on two distinct
chains with different block delays

e

higher average actual delay

leads to
lower security level

—

21




=) Prism’s security-performance trade-off

4. Examples

m) OHIE’s security-performance trade-off
& Simulation

AV

. =) Simulation of Prism and OHIE
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Prism’s security-performance trade-off

L\/C_E:’ Transaction block
D Voter block
Proposer block
L Leader block

® Original paper of Prism claims that

> changing the parameters of transaction blocks (size )l
and rate) doesn’t affect the security '

T Parent Link

4
g | “- Reference Link
A (@) L Chain 1 Chain 2 Chain m
&) — (a8)
N VKBgﬂnﬂSK n,DT,GF and P. Viswanath,
“Prism: Dec ting the blockchain to appro: hphy cal limits,” in
Proceedin g )‘ h 2019 ACM S'IGS'AC C ifer on Computer and

Cnmm s Security, CCS 2019. ACM, 2[)19 pp. 585-602.



Prism’s security-performance trade-off

=

‘@) Transaction block

D Voter block
Proposer block

L Leader blodk

® Original paper of Prism claims that

> changing the parameters of transaction blocks (size @, )l
and rate) doesn’t affect the security -

T Parent Link

“ 7. Reference Link

A -(ili;\ Chain 1 Chain 2 Chain m
) —(d)
N V. K. Bag i].['iﬂ, S. Kannan, D. Tse, G. Fanti, and P. Viswanath,
“Prism: Deconstructing the blockchain to approach phy' al limits,” in
Pro a’ g )‘n' 2()19 ACM SIGSAC Confer n Computer and

Crmm ations Security, CCS 2019. ACM, 2[)19 pp 585— 6[)2

® Apply our analyses to Prism
> delay of proposer blocks i1s related to tx block’s
e propagation delay

: 1.e. Throughput
e generation rate C> P



Prism’s security-performance trade-off

—
[\S_E) Transaction block

D Voter block

® Original paper of Prism claims that

> changing the parameters of transaction blocks (size
and rate) doesn’t affect the security

Proposer block

L Leader blodk

T Parent Link

- ‘* “- Reference Link
ngﬂ*:ﬁ Chain 1 Chain 2 Chain m
. :
Apply our analyses to Prism S _
> delay of proposer blocks is related to tx block’s 2 seeury I
. n 04 O
e propagation delay £ . rleneyCBM | o
. C> i.e. Throughput A Db ° 5
e gencration rate = , B
3 125
B 02t g
Latfn(ﬂf-[al_ o 1 ljj
. . . . . 0 1 2 3 4
m Security-performance trade-off in Prism still exists

> throughput 1 security | latency 1
23



OHIE’s security-performance trade-off

m OHIE’s performance relies on the short and stable block

propagation delay. Rank I
> More than 50% of the network capacity Rk (25 I
|_> propagation delay increases Rak3 I g
Rank 4 \ *:/
Rank 5 [5,6}-1: [5,6]___\_\_\;@

Rank 7 l 7,8 |
Chain 1 Chain 2 Chain 3
—+  pointer to parent block - —» pointer to trailing block

d trailing block
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OHIE’s security-performance trade-off

m OHIE’s performance relies on the short and stable block

propagation delay. Rank 1 I
» More than 50% of the network capacity Rk (25 I
L, propagation delay increases Rank3 I pES
Rank 4 \ ‘A.'
® Apply our analyses to OHIE ks (5} [576]__\_“_\;@
> actual delay of all blocks increases s (5} {ET‘F
Rank 7 @
d trailing block
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OHIE’s security-performance trade-off

m OHIE’s performance relies on the short and stable block

propagation delay. Rank 1 I
» More than 50% of the network capacity R ESIN I
|_> propagation delay increases Rank3 ol G
® Apply our analyses to OHIE s G- [iﬁ]_:\_\_\; o
> actual delay of all blocks increases . G 7}{? ?ﬁh
® Security 1s lower when increasing throughput of OHIE by e e
> increasing the block size el

> 1ncreasing the number of parallel chains
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Simulation

® We modify SimBlock by adding 1000 LoC to evaluate
Prism’s and OHIE

m Results

Security Threshold

Security Threshold

H —@—Prism-Sim
~—®—Prism-CBM
| | —#—Prism-[2]
~—Prism-UDBM

—¥—NC-Sim

0 20 40
Bandwidth Utilization (%)
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Simulation

® We modify SimBlock by adding 1000 LoC to evaluate
Prism’s and OHIE

B Results (Prism as an example)
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m Existing DAG-based protocols still have not overcome
the trade-off between security and performance
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<

Conclusion
&
Future works

R

Our works:

=) identified vulnerabilities in previous works
=) proposed a new model called CBM
=) presented a sound attack strategy

=) cxemplified analysis on Prism and OHIE.
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Conclusion
&
Future works

R

L Future works:
? Generalizability of CBM
? Practicality and Optimality of Our Attack
? Generalizability of the Tradeoff
? Improving DAG-based Protocols
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