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VS Code

• Microsoft VS Code is the most popular IDE used by developers
– Built on Electron framework
– Stack Overflow survey reports 73.71% of devs use VS Code

• Popularity stems from the marketplace of over 50K extensions 
written by third-party developers

– Support for programming languages
– Linters
– Databases / Containers
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Example Extension
Git Graph
• View git graph
• Perform git actions:

push, pull, merge, etc
• Branch actions
• View file diffs
• Compare commits
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What is the state of exploitable vulnerabilities in 
VS Code extensions?
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VS Code Extension Capabilities
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vs code extension

• Node.js application
• npm modules
• File access
• Network access
• Run web servers
• Shell commands and 

scripts



Threat Model
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• Users are 
benign

• Extension 
developers 
are benign

• Git repo is 
untrusted

• External 
attacker



Threat Model
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Attack Vector

Workspace 
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File Read



Threat Model
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Threat Model
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Vulnerability Discovery using Data Flow Analysis

• Data flow analysis of 4 taint sources to 3 taint sinks

10

Workspace 
Setting

File Read

Network 
Response

Web Server 
API

File Write

eval()

Shell 
command

Sources Sinks

Data 
Flow



Data Flow Analysis

• We constructed 12 base queries in CodeQL
• Applied additional filter queries when necessary

CodeQL 
Queries

VS Code 
Marketplace

Source Code

Metadata

CodeQL 
Databases Results

11



Example
class Configuration extends TaintTracking::Configuration {
  Configuration() { this = "Configuration" }
  override predicate isSource(DataFlow::Node source) {

source = any(Http::RouteHandler rh).getARequestNode()
  }
  override predicate isSink(DataFlow::Node sink) {

exists(SystemCommandExecution shell | sink = shell. getACommandArgument ())
  }
}

// Find flows from web server to shell command
from
Configuration cfg, DataFlow::PathNode source, DataFlow::PathNode sink
where
cfg.hasFlowPath(source, sink) and not source.getNode() = sink.getNode()
select
sink.getNode(), source, sink, "shell command depends on $@.",
source.getNode(), "route handler"
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Challenges

• Determining whether 
URL is insecure

• Http URLs and URLs 
with values from 
untrusted sources are 
considered insecure

• Solution: chain another 
CodeQL data flow query

1 var host = 'https://codelift.io/';

2 var analysisUrl = host + 'api/analyses/';

3 

4 function fetchDockerfile(analysis_id, attempts) {

5   var url = analysisUrl + analysis_id + '/files';

6   request.get({url: url, headers: {'Authorization': token}}, cb);
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Challenges

• Determining file path
• Files in VS Code 

workspace considered 
untrusted

• Filtering requires 
some manual effort

 1 // taint source

 2 function getCtestPath(cwd) {

 3   const match =     

       fs.readFileSync( cacheFilePath).toString().match(CTEST_RE);

 4   ...

 5 }

 6 // taint sink

 7 const ctestProcess = child_process.spawn(ctestPath, [ 

 8   '--show-only=json-v1',

 9   ...(!!buildConfig ? ['--build-config', buildConfig] : []),

10   ...args, ], 

11   { cwd }

12 );

Shell 
Command

File ReadFile Path Data Flow
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Filters
• 4 types of filters applied
• Includes both automated and manual filtering
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Empirical Study

● Two key research questions:
– RQ1: Are there vulnerabilities in dependencies imported by the 

extension?
– RQ2: What are the exploitable vulnerabilities (data flows) in the 

extension itself?

● Dataset collected Feb 2023:
– 39K total extensions
– 22K extensions included code
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RQ1: Vulnerable npm Dependencies

17

More than 9000 extensions import 
dependencies with critical-level 
advisories.

VS Code 
extension

npm pkg A npm pkg B npm pkg C

critical-level 
advisory

low-level 
advisory



RQ2: Data Flow Analysis
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716 dangerous data flows



RQ2: Data Flow Analysis
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21 extensions with verified 

code execution exploits

Verified PoC exploits impact 

more than 6 million 
installations

* We contacted the developers of the 21 extensions with verified exploits to notify them of the vulnerabilities. 
6 developers responded and confirmed vulnerabilities, 3 extensions released new fixed versions.
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1  // taint source

2  get gitPaths() {

3    const configValue = vscode.workspace.getConfiguration('git').get('path', null);

4    ...

5  }

6  // taint sink

7  function getGitExecutable(path) {

8    return new Promise((resolve, reject) => {

9    resolveSpawnOutput(cp.spawn(path, ['--version'])).then((values) => {

10   ...

11 }

Example Vulnerability
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VS Code Workspace

{"git": { "path": "a-shell-script.sh"}

PoC Exploit



VS Code Workspace

{"git": { "path": "a-shell-script.sh"}
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PoC Exploit



VS Code Workspace

{"git": { "path": "a-shell-script.sh"}
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VS Code Workspace Trust

● Restricted mode prevents code execution for most extensions
● However, restricted mode is not a full solution
● Disables or limits valuable

– VS Code functionality for tasks
– Debugging
– Extensions
– Workspace settings
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Summary
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Our verified exploits impact more 
than 6 million installations.
Data flows from workspace 
settings and files are most likely 
to be exploited.
One fourth of extensions import 
critical-level vulnerabilities in 
their dependencies.



Questions?
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Elizabeth Lin
elizabethtlin.com
etlin@ncsu.edu

UntrustIDE repository
github.com/s3c2/UntrustIDE

Our verified exploits impact more 
than 6 million installations.
Data flows from workspace 
settings and files are most likely 
to be exploited.
One fourth of extensions import 
critical-level vulnerabilities in 
their dependencies.


