
UntrustIDE:
Exploiting Weaknesses in

VS Code Extensions

Elizabeth Lin, Igibek Koishybayev,
Trevor Dunlap, William Enck,

Alexandros Kapravelos

1

VS Code

• Microsoft VS Code is the most popular IDE used by developers
– Built on Electron framework
– Stack Overflow survey reports 73.71% of devs use VS Code

• Popularity stems from the marketplace of over 50K extensions
written by third-party developers

– Support for programming languages
– Linters
– Databases / Containers

2

Example Extension
Git Graph
• View git graph
• Perform git actions:

push, pull, merge, etc
• Branch actions
• View file diffs
• Compare commits

3

What is the state of exploitable vulnerabilities in
VS Code extensions?

4

VS Code Extension Capabilities

5

vs code extension

• Node.js application
• npm modules
• File access
• Network access
• Run web servers
• Shell commands and

scripts

Threat Model

6

• Users are
benign

• Extension
developers
are benign

• Git repo is
untrusted

• External
attacker

Threat Model

7

Attack Vector

Workspace
Setting

File Read

Threat Model

8

Attack Vector

Network
Response

Threat Model

9

Attack Vector

Web Server
API

Vulnerability Discovery using Data Flow Analysis

• Data flow analysis of 4 taint sources to 3 taint sinks

10

Workspace
Setting

File Read

Network
Response

Web Server
API

File Write

eval()

Shell
command

Sources Sinks

Data
Flow

Data Flow Analysis

• We constructed 12 base queries in CodeQL
• Applied additional filter queries when necessary

CodeQL
Queries

VS Code
Marketplace

Source Code

Metadata

CodeQL
Databases Results

11

Example
class Configuration extends TaintTracking::Configuration {
 Configuration() { this = "Configuration" }
 override predicate isSource(DataFlow::Node source) {

source = any(Http::RouteHandler rh).getARequestNode()
 }
 override predicate isSink(DataFlow::Node sink) {

exists(SystemCommandExecution shell | sink = shell. getACommandArgument ())
 }
}

// Find flows from web server to shell command
from
Configuration cfg, DataFlow::PathNode source, DataFlow::PathNode sink
where
cfg.hasFlowPath(source, sink) and not source.getNode() = sink.getNode()
select
sink.getNode(), source, sink, "shell command depends on $@.",
source.getNode(), "route handler"

12

Shell
Command

Web Server
API

Data Flow

Challenges

• Determining whether
URL is insecure

• Http URLs and URLs
with values from
untrusted sources are
considered insecure

• Solution: chain another
CodeQL data flow query

1 var host = 'https://codelift.io/';

2 var analysisUrl = host + 'api/analyses/';

3

4 function fetchDockerfile(analysis_id, attempts) {

5 var url = analysisUrl + analysis_id + '/files';

6 request.get({url: url, headers: {'Authorization': token}}, cb);

13

eval()
Network

ResponseURL Data Flow

Challenges

• Determining file path
• Files in VS Code

workspace considered
untrusted

• Filtering requires
some manual effort

 1 // taint source

 2 function getCtestPath(cwd) {

 3 const match =

 fs.readFileSync(cacheFilePath).toString().match(CTEST_RE);

 4 ...

 5 }

 6 // taint sink

 7 const ctestProcess = child_process.spawn(ctestPath, [

 8 '--show-only=json-v1',

 9 ...(!!buildConfig ? ['--build-config', buildConfig] : []),

10 ...args,],

11 { cwd }

12);

Shell
Command

File ReadFile Path Data Flow

14

Filters
• 4 types of filters applied
• Includes both automated and manual filtering

Workspace
Setting

File Read

Network
Response

Web Server
API

File Write

eval()

Shell
Command

Sources Sinks

File Path

URL

Enclosing
Brackets

File Path,
Content

Data
Flow

15

Empirical Study

● Two key research questions:
– RQ1: Are there vulnerabilities in dependencies imported by the

extension?
– RQ2: What are the exploitable vulnerabilities (data flows) in the

extension itself?

● Dataset collected Feb 2023:
– 39K total extensions
– 22K extensions included code

16

RQ1: Vulnerable npm Dependencies

17

More than 9000 extensions import
dependencies with critical-level
advisories.

VS Code
extension

npm pkg A npm pkg B npm pkg C

critical-level
advisory

low-level
advisory

RQ2: Data Flow Analysis

18

716 dangerous data flows

RQ2: Data Flow Analysis

19

21 extensions with verified

code execution exploits

Verified PoC exploits impact

more than 6 million
installations

* We contacted the developers of the 21 extensions with verified exploits to notify them of the vulnerabilities.
6 developers responded and confirmed vulnerabilities, 3 extensions released new fixed versions.

20

1 // taint source

2 get gitPaths() {

3 const configValue = vscode.workspace.getConfiguration('git').get('path', null);

4 ...

5 }

6 // taint sink

7 function getGitExecutable(path) {

8 return new Promise((resolve, reject) => {

9 resolveSpawnOutput(cp.spawn(path, ['--version'])).then((values) => {

10 ...

11 }

Example Vulnerability

21

VS Code Workspace

{"git": { "path": "a-shell-script.sh"}

PoC Exploit

VS Code Workspace

{"git": { "path": "a-shell-script.sh"}

22

PoC Exploit

VS Code Workspace

{"git": { "path": "a-shell-script.sh"}

23
cp.spawn()

code
execution

PoC Exploit

VS Code Workspace Trust

● Restricted mode prevents code execution for most extensions
● However, restricted mode is not a full solution
● Disables or limits valuable

– VS Code functionality for tasks
– Debugging
– Extensions
– Workspace settings

24

Summary

25

Our verified exploits impact more
than 6 million installations.
Data flows from workspace
settings and files are most likely
to be exploited.
One fourth of extensions import
critical-level vulnerabilities in
their dependencies.

Questions?

26

Elizabeth Lin
elizabethtlin.com
etlin@ncsu.edu

UntrustIDE repository
github.com/s3c2/UntrustIDE

Our verified exploits impact more
than 6 million installations.
Data flows from workspace
settings and files are most likely
to be exploited.
One fourth of extensions import
critical-level vulnerabilities in
their dependencies.

